Lemma 45.3.4. There is a contravariant functor from the category of smooth projective schemes over $k$ to the category of correspondences which is the identity on objects and sends $f : Y \to X$ to the element $[\Gamma _ f] \in \text{Corr}^0(X, Y)$.
Proof. In the proof of Lemma 45.3.3 we have seen that this construction sends identities to identities. To finish the proof we have to show if $g : Z \to Y$ is another morphism of smooth projective schemes over $k$, then we have $[\Gamma _ g] \circ [\Gamma _ f] = [\Gamma _{f \circ g}]$ in $\text{Corr}^0(X, Z)$. Arguing as in the proof of Lemma 45.3.3 we see that it suffices to show
in $\mathop{\mathrm{CH}}\nolimits ^*(X \times Z)$ when $X$, $Y$, $Z$ are integral. Denote $Z' \subset X \times Y \times Z$ the image of the closed immersion $(f \circ g, g, 1) : Z \to X \times Y \times Z$. Then $Z' = \Gamma _ f \times Z \cap X \times \Gamma _ g$ scheme theoretically and we conclude using Chow Homology, Lemma 42.62.5 that
Since it is clear that $\text{pr}_{13, *}([Z']) = [\Gamma _{f \circ g}]$ the proof is complete. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)