Lemma 45.3.3. Smooth projective schemes over $k$ with correspondences and composition of correspondences as defined above form a graded category over $\mathbf{Q}$ (Differential Graded Algebra, Definition 22.25.1).
Proof. Everything is clear from the construction and Lemma 45.3.1 except for the existence of identity morphisms. Given a smooth projective scheme $X$ consider the class $[\Delta ]$ of the diagonal $\Delta \subset X \times X$ in $\text{Corr}^0(X, X)$. We note that $\Delta $ is equal to the graph of the identity $\text{id}_ X : X \to X$ which is a fact we will use below.
To prove that $[\Delta ]$ can serve as an identity we have to show that $[\Delta ] \circ c = c$ and $c' \circ [\Delta ] = c'$ for any correspondences $c \in \text{Corr}^ r(Y, X)$ and $c' \in \text{Corr}^ s(X, Y)$. For the second case we have to show that
where $\text{pr}_{12} : X \times X \times Y \to X \times X$ is the projection and similarly for $\text{pr}_{13}$ and $\text{pr}_{23}$. We may write $c' = \sum a_ i [Z_ i]$ for some integral closed subschemes $Z_ i \subset X \times Y$ and rational numbers $a_ i$. Thus it clearly suffices to show that
in the chow group of $X \times Y$ for any integral closed subscheme $Z$ of $X \times Y$. After replacing $X$ and $Y$ by the irreducible component containing the image of $Z$ under the two projections we may assume $X$ and $Y$ are integral as well. Then we have to show
Denote $Z' \subset X \times X \times Y$ the image of $Z$ by the morphism $(\Delta , 1) : X \times Y \to X \times X \times Y$. Then $Z'$ is a closed subscheme of $X \times X \times Y$ isomorphic to $Z$ and $Z' = \Delta \times Y \cap X \times Z$ scheme theoretically. By Chow Homology, Lemma 42.62.51 we conclude that
Since $Z'$ maps isomorphically to $Z$ by $\text{pr}_{13}$ also we conclude. The verification that $[\Delta ] \circ c = c$ is similar and we omit it. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)