Lemma 42.55.1. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be a scheme locally of finite type over $S$. Let $\mathcal{E}$ be a locally free $\mathcal{O}_ X$-module of rank $r$. Then
Proof. By the splitting principle we can turn this into a calculation in the polynomial ring on the Chern roots $x_1, \ldots , x_ r$ of $\mathcal{E}$. See Section 42.43. Observe that
Thus the logarithm of the left hand side of the equation in the lemma is
Please notice the minus sign in front. However, we have
Hence we see that the first nonzero term in our Chern class is in degree $r$ and equal to the predicted value. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)