Lemma 42.61.2. Let $k$ be a field. Let $X$ be a scheme locally of finite type over $k$. Then we have a canonical identification
for all $p \in \mathbf{Z}$.
Lemma 42.61.2. Let $k$ be a field. Let $X$ be a scheme locally of finite type over $k$. Then we have a canonical identification
for all $p \in \mathbf{Z}$.
Proof. Consider the element $[\mathop{\mathrm{Spec}}(k)] \in \mathop{\mathrm{CH}}\nolimits _0(\mathop{\mathrm{Spec}}(k))$. We get a map $A^ p(X \to \mathop{\mathrm{Spec}}(k)) \to \mathop{\mathrm{CH}}\nolimits _{-p}(X)$ by sending $c$ to $c \cap [\mathop{\mathrm{Spec}}(k)]$.
Conversely, suppose we have $\alpha \in \mathop{\mathrm{CH}}\nolimits _{-p}(X)$. Then we can define $c_\alpha \in A^ p(X \to \mathop{\mathrm{Spec}}(k))$ as follows: given $X' \to \mathop{\mathrm{Spec}}(k)$ and $\alpha ' \in \mathop{\mathrm{CH}}\nolimits _ n(X')$ we let
in $\mathop{\mathrm{CH}}\nolimits _{n - p}(X \times _ k X')$. To show that this is a bivariant class we write $\alpha = \sum n_ i[X_ i]$ as in Definition 42.8.1. Consider the composition
and denote $f : \coprod X_ i \to \mathop{\mathrm{Spec}}(k)$ the composition. Then $g$ is proper and $f$ is flat of relative dimension $-p$. Pullback along $f$ is a bivariant class $f^* \in A^ p(\coprod X_ i \to \mathop{\mathrm{Spec}}(k))$ by Lemma 42.33.2. Denote $\nu \in A^0(\coprod X_ i)$ the bivariant class which multiplies a cycle by $n_ i$ on the $i$th component. Thus $\nu \circ f^* \in A^ p(\coprod X_ i \to X)$. Finally, we have a bivariant class
by Lemma 42.33.4. The reader easily verifies that $c_\alpha $ is equal to this class and hence is itself a bivariant class.
To finish the proof we have to show that the two constructions are mutually inverse. Since $c_\alpha \cap [\mathop{\mathrm{Spec}}(k)] = \alpha $ this is clear for one of the two directions. For the other, let $c \in A^ p(X \to \mathop{\mathrm{Spec}}(k))$ and set $\alpha = c \cap [\mathop{\mathrm{Spec}}(k)]$. It suffices to prove that
when $X'$ is an integral scheme locally of finite type over $\mathop{\mathrm{Spec}}(k)$, see Lemma 42.35.3. However, then $p' : X' \to \mathop{\mathrm{Spec}}(k)$ is flat of relative dimension $\dim (X')$ and hence $[X'] = (p')^*[\mathop{\mathrm{Spec}}(k)]$. Thus the fact that the bivariant classes $c$ and $c_\alpha $ agree on $[\mathop{\mathrm{Spec}}(k)]$ implies they agree when capped against $[X']$ and the proof is complete. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)