Lemma 42.50.9. In Lemma 42.47.1 say $E_2$ is the restriction of a perfect $E \in D(\mathcal{O}_ X)$ whose restriction to $X_1$ is zero, resp. isomorphic to a finite locally free $\mathcal{O}_{X_1}$-module of rank $< p$ sitting in cohomological degree $0$. Then the class $P'_ p(E_2)$, resp. $c'_ p(E_2)$ of Lemma 42.47.1 agrees with $P_ p(X_2 \to X, E)$, resp. $c_ p(X_2 \to X, E)$ of Definition 42.50.3 provided $E$ satisfies assumption (3) of Situation 42.50.1.
Proof. The assumptions on $E$ imply that there is an open $U \subset X$ containing $X_1$ such that $E|_ U$ is zero, resp. isomorphic to a finite locally free $\mathcal{O}_ U$-module of rank $< p$. See More on Algebra, Lemma 15.75.7. Let $Z \subset X$ be the complement of $U$ in $X$ endowed with the reduced induced closed subscheme structure. Then $P_ p(X_2 \to X, E) = (Z \to X_2)_* \circ P_ p(Z \to X, E)$, resp. $c_ p(X_2 \to X, E) = (Z \to X_2)_* \circ c_ p(Z \to X, E)$ by Lemma 42.50.8. Now we can prove that $P_ p(X_2 \to X, E)$, resp. $c_ p(X_2 \to X, E)$ satisfies the characterization of $P'_ p(E_2)$, resp. $c'_ p(E_2)$ given in Lemma 42.47.1. Namely, by the relation $P_ p(X_2 \to X, E) = (Z \to X_2)_* \circ P_ p(Z \to X, E)$, resp. $c_ p(X_2 \to X, E) = (Z \to X_2)_* \circ c_ p(Z \to X, E)$ just proven and the fact that $X_1 \cap Z = \emptyset $, the composition $P_ p(X_2 \to X, E) \circ i_{1, *}$, resp. $c_ p(X_2 \to X, E) \circ i_{1, *}$ is zero by Lemma 42.50.7. On the other hand, $P_ p(X_2 \to X, E) \circ i_{2, *} = P_ p(E_2)$, resp. $c_ p(X_2 \to X, E) \circ i_{2, *} = c_ p(E_2)$ by Lemma 42.50.6. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)