Lemma 42.48.3. In Lemma 42.48.1 let $g : W' \to W$ be a proper morphism which is an isomorphism over $\mathbf{A}^1_ X$. Let $C' \in A^0(W'_\infty \to X)$ and $C \in A^0(W_\infty \to X)$ be the classes constructed in Lemma 42.48.1. Then $g_{\infty , *} \circ C' = C$ in $A^0(W_\infty \to X)$.
Proof. Set $b' = b \circ g : W' \to \mathbf{P}^1_ X$. Denote $i'_\infty : W'_\infty \to W'$ the inclusion morphism. Denote $g_\infty : W'_\infty \to W_\infty $ the restriction of $g$. Given $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$ choose $\beta ' \in \mathop{\mathrm{CH}}\nolimits _{k + 1}(W')$ restricting to the flat pullback of $\alpha $ on $(b')^{-1}\mathbf{A}^1_ X$. Then $\beta = g_*\beta ' \in \mathop{\mathrm{CH}}\nolimits _{k + 1}(W)$ restricts to the flat pullback of $\alpha $ on $b^{-1}\mathbf{A}^1_ X$. Then $i_\infty ^*\beta = g_{\infty , *}(i'_\infty )^*\beta '$ by Lemma 42.29.8. This and the corresponding fact after base change by morphisms $X' \to X$ locally of finite type, corresponds to the assertion made in the lemma. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)