Lemma 42.44.2. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be a scheme locally of finite type over $S$. Let
\[ 0 \to \mathcal{N}' \to \mathcal{N} \to \mathcal{E} \to 0 \]
be a short exact sequence of finite locally free $\mathcal{O}_ X$-modules. Consider the closed embedding
\[ i : N' = \underline{\mathop{\mathrm{Spec}}}_ X(\text{Sym}((\mathcal{N}')^\vee )) \longrightarrow N = \underline{\mathop{\mathrm{Spec}}}_ X(\text{Sym}(\mathcal{N}^\vee )) \]
For $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$ we have
\[ i_*(p')^*\alpha = p^*(c_{top}(\mathcal{E}) \cap \alpha ) \]
where $p' : N' \to X$ and $p : N \to X$ are the structure morphisms.
Proof.
Here $c_{top}(\mathcal{E})$ is the bivariant class defined in Remark 42.38.11. By its very definition, in order to verify the formula, we may assume that $\mathcal{E}$ has constant rank. We may similarly assume $\mathcal{N}'$ and $\mathcal{N}$ have constant ranks, say $r'$ and $r$, so $\mathcal{E}$ has rank $r - r'$ and $c_{top}(\mathcal{E}) = c_{r - r'}(\mathcal{E})$. Observe that $p^*\mathcal{E}$ has a canonical section
\[ s \in \Gamma (N, p^*\mathcal{E}) = \Gamma (X, p_*p^*\mathcal{E}) = \Gamma (X, \mathcal{E} \otimes _{\mathcal{O}_ X} \text{Sym}(\mathcal{N}^\vee ) \supset \Gamma (X, \mathop{\mathcal{H}\! \mathit{om}}\nolimits (\mathcal{N}, \mathcal{E})) \]
corresponding to the surjection $\mathcal{N} \to \mathcal{E}$ given in the statement of the lemma. The vanishing scheme of this section is exactly $N' \subset N$. Let $Y \subset X$ be an integral closed subscheme of $\delta $-dimension $n$. Then we have
$p^*[Y] = [p^{-1}(Y)]$ since $p^{-1}(Y)$ is integral of $\delta $-dimension $n + r$,
$(p')^*[Y] = [(p')^{-1}(Y)]$ since $(p')^{-1}(Y)$ is integral of $\delta $-dimension $n + r'$,
the restriction of $s$ to $p^{-1}Y$ has vanishing scheme $(p')^{-1}Y$ and the closed immersion $(p')^{-1}Y \to p^{-1}Y$ is a regular immersion (locally cut out by a regular sequence).
We conclude that
\[ (p')^*[Y] = c_{r - r'}(p^*\mathcal{E}) \cap p^*[Y] \quad \text{in}\quad \mathop{\mathrm{CH}}\nolimits _*(N) \]
by Lemma 42.44.1. This proves the lemma.
$\square$
Comments (0)
There are also: