Lemma 42.43.4. In Situation 42.7.1 let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ and $\mathcal{F}$ be a finite locally free $\mathcal{O}_ X$-modules of ranks $r$ and $s$. Then we have
and so on in $A^*(X)$.
Lemma 42.43.4. In Situation 42.7.1 let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ and $\mathcal{F}$ be a finite locally free $\mathcal{O}_ X$-modules of ranks $r$ and $s$. Then we have
and so on in $A^*(X)$.
Proof. Arguing exactly as in the proof of Lemma 42.43.3 we may assume we have invertible $\mathcal{O}_ X$-modules ${\mathcal L}_ i$, $i = 1, \ldots , r$ ${\mathcal N}_ i$, $i = 1, \ldots , s$ filtrations
such that $\mathcal{E}_ i/\mathcal{E}_{i - 1} \cong \mathcal{L}_ i$ and such that $\mathcal{F}_ j/\mathcal{F}_{j - 1} \cong \mathcal{N}_ j$. Ordering pairs $(i, j)$ lexicographically we obtain a filtration
with successive quotients
By Lemma 42.40.4 we have
in $A^*(X)$. The result follows from a formal computation which we omit. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #7524 by Hao Peng on
Comment #7655 by Stacks Project on