The Stacks project

Remark 42.33.6. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. For $i = 1, 2$ let $Z_ i \to X$ be a morphism of schemes locally of finite type. Let $c_ i \in A^{p_ i}(Z_ i \to X)$, $i = 1, 2$ be bivariant classes. For any $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$ we can ask whether

\[ c_1 \cap c_2 \cap \alpha = c_2 \cap c_1 \cap \alpha \]

in $\mathop{\mathrm{CH}}\nolimits _{k - p_1 - p_2}(Z_1 \times _ X Z_2)$. If this is true and if it holds after any base change by $X' \to X$ locally of finite type, then we say $c_1$ and $c_2$ commute. Of course this is the same thing as saying that

\[ res(c_1) \circ c_2 = res(c_2) \circ c_1 \]

in $A^{p_1 + p_2}(Z_1 \times _ X Z_2 \to X)$. Here $res(c_1) \in A^{p_1}(Z_1 \times _ X Z_2 \to Z_2)$ is the restriction of $c_1$ as in Remark 42.33.5; similarly for $res(c_2)$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0FA2. Beware of the difference between the letter 'O' and the digit '0'.