Remark 42.34.8. Let $(S, \delta )$ be as in Situation 42.7.1. Let $Z \to X$ be a closed immersion of schemes locally of finite type over $S$. Denote $res : A^ p(Z \to X) \to A^ p(Z)$ the restriction map of Remark 42.33.5. For $c \in A^ p(Z \to X)$ we have $res(c) \cap \alpha = c \cap i_*\alpha $ for $\alpha \in \mathop{\mathrm{CH}}\nolimits _*(Z)$. Namely $res(c) \cap \alpha = c \cap \alpha $ and compatibility of $c$ with proper pushforward gives $(Z \to Z)_*(c \cap \alpha ) = c \cap (Z \to X)_*\alpha $.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: