Lemma 61.17.2. Let $f : T \to S$ be a morphism of schemes. For $K$ in $D((\mathit{Sch}/T)_{pro\text{-}\acute{e}tale})$ we have
in $D(S_{pro\text{-}\acute{e}tale})$. More generally, let $S' \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale})$ with structure morphism $g : S' \to S$. Consider the fibre product
Then for $K$ in $D((\mathit{Sch}/T)_{pro\text{-}\acute{e}tale})$ we have
in $D(S'_{pro\text{-}\acute{e}tale})$ and
in $D((\mathit{Sch}/S')_{pro\text{-}\acute{e}tale})$.
Comments (0)