The Stacks project

Lemma 61.17.2. Let $f : T \to S$ be a morphism of schemes. For $K$ in $D((\mathit{Sch}/T)_{pro\text{-}\acute{e}tale})$ we have

\[ (Rf_{big, *}K)|_{S_{pro\text{-}\acute{e}tale}} = Rf_{small, *}(K|_{T_{pro\text{-}\acute{e}tale}}) \]

in $D(S_{pro\text{-}\acute{e}tale})$. More generally, let $S' \in \mathop{\mathrm{Ob}}\nolimits ((\mathit{Sch}/S)_{pro\text{-}\acute{e}tale})$ with structure morphism $g : S' \to S$. Consider the fibre product

\[ \xymatrix{ T' \ar[r]_{g'} \ar[d]_{f'} & T \ar[d]^ f \\ S' \ar[r]^ g & S } \]

Then for $K$ in $D((\mathit{Sch}/T)_{pro\text{-}\acute{e}tale})$ we have

\[ i_ g^{-1}(Rf_{big, *}K) = Rf'_{small, *}(i_{g'}^{-1}K) \]

in $D(S'_{pro\text{-}\acute{e}tale})$ and

\[ g_{big}^{-1}(Rf_{big, *}K) = Rf'_{big, *}((g'_{big})^{-1}K) \]

in $D((\mathit{Sch}/S')_{pro\text{-}\acute{e}tale})$.

Proof. The first equality follows from Lemma 61.17.1 and (61.12.16.1) on choosing a K-injective complex of abelian sheaves representing $K$. The second equality follows from Lemma 61.17.1 and Lemma 61.12.18 on choosing a K-injective complex of abelian sheaves representing $K$. The third equality follows similarly from Cohomology on Sites, Lemmas 21.7.1 and 21.20.1 and Lemma 61.12.18 on choosing a K-injective complex of abelian sheaves representing $K$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F68. Beware of the difference between the letter 'O' and the digit '0'.