The Stacks project

Lemma 37.75.8. Let $f : X \to Y$ be a morphism of schemes. Assume

  1. $f$ is locally quasi-finite, and

  2. $Y$ is geometrically unibranch and locally Noetherian.

Then there is a weighting $w : X \to \mathbf{Z}_{\geq 0}$ given by the rule that sends $x \in X$ lying over $y \in Y$ to the “generic separable degree” of $\mathcal{O}_{X, x}^{sh}$ over $\mathcal{O}_{Y, y}^{sh}$.

Proof. It follows from Algebra, Lemma 10.156.3 that $\mathcal{O}_{Y, y}^{sh} \to \mathcal{O}_{X, x}^{sh}$ is finite. Since $Y$ is geometrically unibranch there is a unique minimal prime $\mathfrak p$ in $\mathcal{O}_{Y, y}^{sh}$, see More on Algebra, Lemma 15.106.5. Write

\[ (\kappa (\mathfrak p) \otimes _{\mathcal{O}_{Y, y}^{sh}} \mathcal{O}_{X, x}^{sh})_{red} = \prod K_ i \]

as a finite product of fields. We set $w(x) = \sum [K_ i : \kappa (\mathfrak p)]_ s$.

Since this definition is clearly insensitive to étale localization, in order to show that $w$ is a weighting we reduce to showing that if $f$ is a finite morphism, then $\int _ f w$ is locally constant. Observe that the value of $\int _ f w$ in a generic point $\eta $ of $Y$ is just the number of points of the geometric fibre $X_{\overline{\eta }}$ of $X \to Y$ over $\eta $. Moreover, since $Y$ is unibranch a point $y$ of $Y$ is the specialization of a unique generic point $\eta $. Hence it suffices to show that $(\int _ f w)(y)$ is equal to the number of points of $X_{\overline{\eta }}$. After passing to an affine neighbourhood of $y$ we may assume $X \to Y$ is given by a finite ring map $A \to B$. Suppose $\mathcal{O}_{Y, y}^{sh}$ is constructed using a map $\kappa (y) \to k$ into an algebraically closed field $k$. Then

\[ \mathcal{O}_{Y, y}^{sh} \otimes _ A B = \prod \nolimits _{f(x) = y} \prod \nolimits _{\varphi \in \mathop{\mathrm{Mor}}\nolimits _{\kappa (y)}(\kappa (x), k)} \mathcal{O}_{X, x}^{sh} \]

by Algebra, Lemma 10.153.4 and the lemma used above. Observe that the minimal prime $\mathfrak p$ of $\mathcal{O}_{Y, y}^{sh}$ maps to the prime of $A$ corresponding to $\eta $. Hence we see that the desired equality holds because the number of points of a geometric fibre is unchanged by a field extension. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F3E. Beware of the difference between the letter 'O' and the digit '0'.