Lemma 59.95.8. Let $f : X \to Y$ be an affine morphism of schemes of finite type over a field $K$. Let $E_ a(X)$ be the set of points $x \in X$ with $\text{trdeg}_ K(\kappa (x)) \leq a$. Let $\mathcal{F}$ be an abelian torsion sheaf on $X_{\acute{e}tale}$ whose support is contained in $E_ a$. Then $R^ qf_*\mathcal{F}$ has support contained in $E_{a - q}(Y)$.
Proof. The question is local on $Y$ hence we can assume $Y$ is affine. Then $X$ is affine too and we can choose a diagram
where the horizontal arrows are closed immersions and the vertical arrow on the right is the projection (details omitted). Then $j_*R^ qf_*\mathcal{F} = R^ q\text{pr}_*i_*\mathcal{F}$ by the vanishing of the higher direct images of $i$ and $j$, see Proposition 59.55.2. Moreover, the description of the stalks of $j_*$ in the proposition shows that it suffices to prove the vanishing for $j_*R^ qf_*\mathcal{F}$. Thus we may assume $f$ is the projection morphism $\text{pr} : \mathbf{A}^{n + m}_ K \to \mathbf{A}^ n_ K$ and an abelian torsion sheaf $\mathcal{F}$ on $\mathbf{A}^{n + m}_ K$ satisfying the assumption in the statement of the lemma.
Let $y$ be a point in $\mathbf{A}^ n_ K$. By Theorem 59.53.1 we have
Say $b = \text{trdeg}_ K(\kappa (y))$. From Lemma 59.95.5 we get an embedding
Write $\mathcal{O}_{Y, y}^{sh} = \mathop{\mathrm{colim}}\nolimits B_ i$ as the filtered colimit of finite type $L$-subalgebras $B_ i \subset \mathcal{O}_{Y, y}^{sh}$ containing the ring $K[T_1, \ldots , T_ n]$ of regular functions on $\mathbf{A}^ n_ K$. Then we get
If $z \in \mathbf{A}^ m_{B_ i}$ is a point in the support of $\mathcal{F}$, then the image $x$ of $z$ in $\mathbf{A}^{m + n}_ K$ satisfies $\text{trdeg}_ K(\kappa (x)) \leq a$ by our assumption on $\mathcal{F}$ in the lemma. Since $\mathcal{O}_{Y, y}^{sh}$ is a filtered colimit of étale algebras over $K[T_1, \ldots , T_ n]$ and since $B_ i \subset \mathcal{O}_{Y, y}^{sh}$ we see that $\kappa (z)/\kappa (x)$ is algebraic (some details omitted). Then $\text{trdeg}_ K(\kappa (z)) \leq a$ and hence $\text{trdeg}_ L(\kappa (z)) \leq a - b$. By Lemma 59.95.7 we see that
Thus by Theorem 59.51.3 we get $(Rf_*\mathcal{F})_{\overline{y}} = 0$ for $q > a - b$ as desired. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: