The Stacks project

Theorem 59.53.1. Let $f: X \to S$ be a quasi-compact and quasi-separated morphism of schemes, $\mathcal{F}$ an abelian sheaf on $X_{\acute{e}tale}$, and $\overline{s}$ a geometric point of $S$ lying over $s \in S$. Then

\[ \left(R^ nf_* \mathcal{F}\right)_{\overline{s}} = H_{\acute{e}tale}^ n( X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}\mathcal{F}) \]

where $p : X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}) \to X$ is the projection. For $K \in D^+(X_{\acute{e}tale})$ and $n \in \mathbf{Z}$ we have

\[ \left(R^ nf_*K\right)_{\overline{s}} = H_{\acute{e}tale}^ n(X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K) \]

In fact, we have

\[ \left(Rf_*K\right)_{\overline{s}} = R\Gamma _{\acute{e}tale}(X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K) \]

in $D^+(\textit{Ab})$.

Proof. Let $\mathcal{I}$ be the category of étale neighborhoods of $\overline{s}$ on $S$. By Lemma 59.51.6 we have

\[ (R^ nf_*\mathcal{F})_{\overline{s}} = \mathop{\mathrm{colim}}\nolimits _{(V, \overline{v}) \in \mathcal{I}^{opp}} H_{\acute{e}tale}^ n(X \times _ S V, \mathcal{F}|_{X \times _ S V}). \]

We may replace $\mathcal{I}$ by the initial subcategory consisting of affine étale neighbourhoods of $\overline{s}$. Observe that

\[ \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}) = \mathop{\mathrm{lim}}\nolimits _{(V, \overline{v}) \in \mathcal{I}} V \]

by Lemma 59.33.1 and Limits, Lemma 32.2.1. Since fibre products commute with limits we also obtain

\[ X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}) = \mathop{\mathrm{lim}}\nolimits _{(V, \overline{v}) \in \mathcal{I}} X \times _ S V \]

We conclude by Lemma 59.51.5. For the second variant, use the same argument using Lemma 59.52.3 instead of Lemma 59.51.5.

To see that the last statement is true, it suffices to produce a map $\left(Rf_*K\right)_{\overline{s}} \to R\Gamma _{\acute{e}tale}(X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K)$ in $D^+(\textit{Ab})$ which realizes the ismorphisms on cohomology groups in degree $n$ above for all $n$. To do this, choose a bounded below complex $\mathcal{J}^\bullet $ of injective abelian sheaves on $X_{\acute{e}tale}$ representing $K$. The complex $f_*\mathcal{J}^\bullet $ represents $Rf_*K$. Thus the complex

\[ (f_*\mathcal{J}^\bullet )_{\overline{s}} = \mathop{\mathrm{colim}}\nolimits _{(V, \overline{v}) \in \mathcal{I}^{opp}} (f_*\mathcal{J}^\bullet )(V) \]

represents $(Rf_*K)_{\overline{s}}$. For each $V$ we have maps

\[ (f_*\mathcal{J}^\bullet )(V) = \Gamma (X \times _ S V, \mathcal{J}^\bullet ) \longrightarrow \Gamma (X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}\mathcal{J}^\bullet ) \]

and the target complex represents $R\Gamma _{\acute{e}tale}(X \times _ S \mathop{\mathrm{Spec}}(\mathcal{O}_{S, \overline{s}}^{sh}), p^{-1}K)$ in $D^+(\textit{Ab})$. Taking the colimit of these maps we obtain the result. $\square$


Comments (2)

Comment #2107 by Keenan Kidwell on

I'm confused by the strict Henselization appearing in the statement of the theorem. According to 59.33.1, , the stalk of the étale structure sheaf of at the geometric point , is already strictly Henselian right? So is the theorem really meant to have in place of , the latter being, as far as I can tell, the same thing as ? Of course this doesn't change the content of the theorem.

There are also:

  • 2 comment(s) on Section 59.53: Stalks of higher direct images

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 03Q9. Beware of the difference between the letter 'O' and the digit '0'.