Proposition 59.95.6. Let $K$ be a field. Let $X$ be an affine scheme of finite type over $K$. Then we have $\text{cd}(X) \leq \dim (X) + \text{cd}(K)$.
Proof. We will prove this by induction on $\dim (X)$. Let $\mathcal{F}$ be an abelian torsion sheaf on $X_{\acute{e}tale}$.
The case $\dim (X) = 0$. In this case the structure morphism $f : X \to \mathop{\mathrm{Spec}}(K)$ is finite. Hence we see that $R^ if_*\mathcal{F} = 0$ for $i > 0$, see Proposition 59.55.2. Thus $H^ i_{\acute{e}tale}(X, \mathcal{F}) = H^ i_{\acute{e}tale}(\mathop{\mathrm{Spec}}(K), f_*\mathcal{F})$ by the Leray spectral sequence for $f$ (Cohomology on Sites, Lemma 21.14.5) and the result is clear.
The case $\dim (X) = 1$. This is Lemma 59.95.3.
Assume $d = \dim (X) > 1$ and the proposition holds for finite type affine schemes of dimension $< d$ over fields. By Noether normalization, see for example Varieties, Lemma 33.18.2, there exists a finite morphism $f : X \to \mathbf{A}^ d_ K$. Recall that $R^ if_*\mathcal{F} = 0$ for $i > 0$ by Proposition 59.55.2. By the Leray spectral sequence for $f$ (Cohomology on Sites, Lemma 21.14.5) we conclude that it suffices to prove the result for $\pi _*\mathcal{F}$ on $\mathbf{A}^ d_ K$.
Interlude I. Let $j : X \to Y$ be an open immersion of smooth $d$-dimensional varieties over $K$ (not necessarily affine) whose complement is the support of an effective Cartier divisor $D$. The sheaves $R^ qj_*\mathcal{F}$ for $q > 0$ are supported on $D$. We claim that $(R^ qj_*\mathcal{F})_{\overline{y}} = 0$ for $a = \text{trdeg}_ K(\kappa (y)) > d - q$. Namely, by Theorem 59.53.1 we have
Choose a local equation $f \in \mathfrak m_ y \subset \mathcal{O}_{Y, y}$ for $D$. Then we have
Using Lemma 59.95.5 we get an embedding
Since the transcendence degree over $K$ of the fraction field of $\mathcal{O}_{Y, y}^{sh}$ is $d$, we see that $\mathcal{O}_{Y, y}^{sh}[1/f]$ is a filtered colimit of $(d - a - 1)$-dimensional finite type algebras over the field $K(t_1, \ldots , t_ a)^{sep}(x)$ which itself has cohomological dimension $1$ by Lemma 59.95.4. Thus by induction hypothesis and Lemma 59.95.2 we obtain the desired vanishing.
Interlude II. Let $Z$ be a smooth variety over $K$ of dimension $d - 1$. Let $E_ a \subset Z$ be the set of points $z \in Z$ with $\text{trdeg}_ K(\kappa (z)) \leq a$. Observe that $E_ a$ is closed under specialization, see Varieties, Lemma 33.20.3. Suppose that $\mathcal{G}$ is a torsion abelian sheaf on $Z$ whose support is contained in $E_ a$. Then we claim that $H^ b_{\acute{e}tale}(Z, \mathcal{G}) = 0$ for $b > a + \text{cd}(K)$. Namely, we can write $\mathcal{G} = \mathop{\mathrm{colim}}\nolimits \mathcal{G}_ i$ with $\mathcal{G}_ i$ a torsion abelian sheaf supported on a closed subscheme $Z_ i$ contained in $E_ a$, see Lemma 59.74.5. Then the induction hypothesis kicks in to imply the desired vanishing for $\mathcal{G}_ i$1. Finally, we conclude by Theorem 59.51.3.
Consider the commutative diagram
Observe that $j$ is an open immersion of smooth $d$-dimensional varieties whose complement is an effective Cartier divisor $D$. Thus we may use the results obtained in interlude I. We are going to study the relative Leray spectral sequence
Since $R^ qj_*\mathcal{F}$ for $q > 0$ is supported on $D$ and since $g|_ D : D \to \mathbf{A}^{d - 1}_ K$ is an isomorphism, we find $R^ pg_*R^ qj_*\mathcal{F} = 0$ for $p > 0$ and $q > 0$. Moreover, we have $R^ qj_*\mathcal{F} = 0$ for $q > d$. On the other hand, $g$ is a proper morphism of relative dimension $1$. Hence by Lemma 59.92.2 we see that $R^ pg_*j_*\mathcal{F} = 0$ for $p > 2$. Thus the $E_2$-page of the spectral sequence looks like this
We conclude that $R^ qf_*\mathcal{F} = g_*R^ qj_*\mathcal{F}$ for $q > 2$. By interlude I we see that the support of $R^ qf_*\mathcal{F}$ for $q > 2$ is contained in the set of points of $\mathbf{A}^{d - 1}_ K$ whose residue field has transcendence degree $\leq d - q$. By interlude II
On the other hand, by Theorem 59.53.1 we have $R^2f_*\mathcal{F}_{\overline{\eta }} = H^2(\mathbf{A}^1_{\overline{\eta }}, \mathcal{F}) = 0$ (vanishing by the case of dimension $1$) where $\eta $ is the generic point of $\mathbf{A}^{d - 1}_ K$. Hence by interlude II again we see
Finally, we have
by induction hypothesis. Combining everything we just said with the Leray spectral sequence $H^ p(\mathbf{A}^{d - 1}_ K, R^ qf_*\mathcal{F}) \Rightarrow H^{p + q}(\mathbf{A}^ d_ K, \mathcal{F})$ we conclude. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (5)
Comment #4985 by Noah Olander on
Comment #4995 by Noah Olander on
Comment #5230 by Johan on
Comment #8286 by Xiaolong Liu on
Comment #8917 by Stacks project on
There are also: