The Stacks project

Lemma 59.88.6. With $f : X \to S$ and $n$ as in Remark 59.88.1 assume for some $q \geq 1$ we have that $BC(f, n, q - 1)$ is true, but $BC(f, n, q)$ is not. Then there exist a commutative diagram

\[ \xymatrix{ X \ar[d]_ f & X' \ar[d]_{f'} \ar[l] & Y \ar[l]^ h \ar[d]^ e \\ S & S' \ar[l] & \mathop{\mathrm{Spec}}(K) \ar[l]_ g } \]

where $X' = X \times _ S S'$, $Y = X' \times _{S'} \mathop{\mathrm{Spec}}(K)$, $K$ is a field, and $\mathcal{F}$ is an abelian sheaf on $\mathop{\mathrm{Spec}}(K)$ annihilated by $n$ such that $(f')^{-1}R^ qg_*\mathcal{F} \to R^ qh_*e^{-1}\mathcal{F}$ is not an isomorphism.

Proof. Choose a commutative diagram

\[ \xymatrix{ X \ar[d]_ f & X' \ar[l] \ar[d]_{f'} & Y \ar[l]^ h \ar[d]^ e \\ S & S' \ar[l] & T \ar[l]_ g } \]

with $X' = X \times _ S S'$ and $Y = X' \times _{S'} T$ and $g$ quasi-compact and quasi-separated, and an abelian sheaf $\mathcal{F}$ on $T_{\acute{e}tale}$ annihilated by $n$ such that the base change map $(f')^{-1}R^ qg_*\mathcal{F} \to R^ qh_*e^{-1}\mathcal{F}$ is not an isomorphism. Of course we may and do replace $S'$ by an affine open of $S'$; this implies that $T$ is quasi-compact and quasi-separated. By Lemma 59.88.2 we see $(f')^{-1}R^ qg_*\mathcal{F} \to R^ qh_*e^{-1}\mathcal{F}$ is injective. Pick a geometric point $\overline{x}$ of $X'$ and an element $\xi $ of $(R^ qh_*q^{-1}\mathcal{F})_{\overline{x}}$ which is not in the image of the map $((f')^{-1}R^ qg_*\mathcal{F})_{\overline{x}} \to (R^ qh_*e^{-1}\mathcal{F})_{\overline{x}}$.

Consider a morphism $\pi : T' \to T$ with $T'$ quasi-compact and quasi-separated and denote $\mathcal{F}' = \pi ^{-1}\mathcal{F}$. Denote $\pi ' : Y' = Y \times _ T T' \to Y$ the base change of $\pi $ and $e' : Y' \to T'$ the base change of $e$. Picture

\[ \vcenter { \xymatrix{ X' \ar[d]_{f'} & Y \ar[l]^ h \ar[d]^ e & Y' \ar[l]^{\pi '} \ar[d]^{e'} \\ S' & T \ar[l]_ g & T' \ar[l]_\pi } } \quad \text{and}\quad \vcenter { \xymatrix{ X' \ar[d]_{f'} & & Y' \ar[ll]^{h' = h \circ \pi '} \ar[d]^{e'} \\ S' & & T' \ar[ll]_{g' = g \circ \pi } } } \]

Using pullback maps we obtain a canonical commutative diagram

\[ \xymatrix{ (f')^{-1}R^ qg_*\mathcal{F} \ar[r] \ar[d] & (f')^{-1}R^ qg'_*\mathcal{F}' \ar[d] \\ R^ qh_*e^{-1}\mathcal{F} \ar[r] & R^ qh'_*(e')^{-1}\mathcal{F}' } \]

of abelian sheaves on $X'$. Let $P(T')$ be the property

  • The image $\xi '$ of $\xi $ in $(Rh'_*(e')^{-1}\mathcal{F}')_{\overline{x}}$ is not in the image of the map $(f^{-1}R^ qg'_*\mathcal{F}')_{\overline{x}} \to (R^ qh'_*(e')^{-1}\mathcal{F}')_{\overline{x}}$.

We claim that hypotheses (1), (2), and (3) of Lemma 59.88.5 hold for $P$ which proves our lemma.

Condition (1) of Lemma 59.88.5 holds for $P$ because the étale topology of a scheme and a thickening of the scheme is the same. See Proposition 59.45.4.

Suppose that $I$ is a directed set and that $T_ i$ is an inverse system over $I$ of quasi-compact and quasi-separated schemes over $T$ with affine transition morphisms. Set $T' = \mathop{\mathrm{lim}}\nolimits T_ i$. Denote $\mathcal{F}'$ and $\mathcal{F}_ i$ the pullback of $\mathcal{F}$ to $T'$, resp. $T_ i$. Consider the diagrams

\[ \vcenter { \xymatrix{ X \ar[d]_{f'} & Y \ar[l]^ h \ar[d]^ e & Y_ i \ar[l]^{\pi _ i'} \ar[d]^{e_ i} \\ S & T \ar[l]_ g & T_ i \ar[l]_{\pi _ i} } } \quad \text{and}\quad \vcenter { \xymatrix{ X \ar[d]_{f'} & & Y_ i \ar[ll]^{h_ i = h \circ \pi _ i'} \ar[d]^{e_ i} \\ S & & T_ i \ar[ll]_{g_ i = g \circ \pi _ i} } } \]

as in the previous paragraph. It is clear that $\mathcal{F}'$ on $T'$ is the colimit of the pullbacks of $\mathcal{F}_ i$ to $T'$ and that $(e')^{-1}\mathcal{F}'$ is the colimit of the pullbacks of $e_ i^{-1}\mathcal{F}_ i$ to $Y'$. By Lemma 59.51.8 we have

\[ R^ qh'_*(e')^{-1}\mathcal{F}' = \mathop{\mathrm{colim}}\nolimits R^ qh_{i, *}e_ i^{-1}\mathcal{F}_ i \quad \text{and}\quad (f')^{-1}R^ qg'_*\mathcal{F}' = \mathop{\mathrm{colim}}\nolimits (f')^{-1}R^ qg_{i, *}\mathcal{F}_ i \]

It follows that if $P(T_ i)$ is true for all $i$, then $P(T')$ holds. Thus condition (2) of Lemma 59.88.5 holds for $P$.

The most interesting is condition (3) of Lemma 59.88.5. Assume $T'$ is a quasi-compact and quasi-separated scheme over $T$ such that $P(T')$ is true. Let $Z \subset T'$ be a closed subscheme with complement $V \subset T'$ quasi-compact. Consider the diagram

\[ \xymatrix{ Y' \times _{T'} Z \ar[d]_{e_ Z} \ar[r]_{i'} & Y' \ar[d]_{e'} & Y' \times _{T'} V \ar[l]^{j'} \ar[d]^{e_ V} \\ Z \ar[r]^ i & T' & V \ar[l]_ j } \]

Choose an injective map $j^{-1}\mathcal{F}' \to \mathcal{J}$ where $\mathcal{J}$ is an injective sheaf of $\mathbf{Z}/n\mathbf{Z}$-modules on $V$. Looking at stalks we see that the map

\[ \mathcal{F}' \to \mathcal{G} = j_*\mathcal{J} \oplus i_*i^{-1}\mathcal{F}' \]

is injective. Thus $\xi '$ maps to a nonzero element of

\begin{align*} & \mathop{\mathrm{Coker}}\left( ((f')^{-1}R^ qg'_*\mathcal{G})_{\overline{x}} \to (R^ qh'_*(e')^{-1}\mathcal{G})_{\overline{x}} \right) = \\ & \mathop{\mathrm{Coker}}\left( ((f')^{-1}R^ qg'_*j_*\mathcal{J})_{\overline{x}} \to (R^ qh'_*(e')^{-1}j_*\mathcal{J})_{\overline{x}} \right) \oplus \\ & \mathop{\mathrm{Coker}}\left( ((f')^{-1}R^ qg'_*i_*i^{-1}\mathcal{F}')_{\overline{x}} \to (R^ qh'_*(e')^{-1}i_*i^{-1}\mathcal{F}')_{\overline{x}} \right) \end{align*}

by part (2) of Lemma 59.88.2. If $\xi '$ does not map to zero in the second summand, then we use

\[ (f')^{-1}R^ qg'_*i_*i^{-1}\mathcal{F}' = (f')^{-1}R^ q(g' \circ i)_*i^{-1}\mathcal{F}' \]

(because $Ri_* = i_*$ by Proposition 59.55.2) and

\[ R^ qh'_*(e')^{-1}i_*i^{-1}\mathcal{F} = R^ qh'_*i'_*e_ Z^{-1}i^{-1}\mathcal{F} = R^ q(h' \circ i')_*e_ Z^{-1}i^{-1}\mathcal{F}' \]

(first equality by Lemma 59.55.3 and the second because $Ri'_* = i'_*$ by Proposition 59.55.2) to we see that we have $P(Z)$. Finally, suppose $\xi '$ does not map to zero in the first summand. We have

\[ (e')^{-1}j_*\mathcal{J} = j'_*e_ V^{-1}\mathcal{J} \quad \text{and}\quad R^ aj'_*e_ V^{-1}\mathcal{J} = 0, \quad a = 1, \ldots , q - 1 \]

by $BC(f, n, q - 1)$ applied to the diagram

\[ \xymatrix{ X \ar[d]_ f & Y' \ar[l] \ar[d]_{e'} & Y \ar[l]^{j'} \ar[d]^{e_ V} \\ S & T' \ar[l] & V \ar[l]_ j } \]

and the fact that $\mathcal{J}$ is injective. By the relative Leray spectral sequence for $h' \circ j'$ (Cohomology on Sites, Lemma 21.14.7) we deduce that

\[ R^ qh'_*(e')^{-1}j_*\mathcal{J} = R^ qh'_*j'_*e_ V^{-1}\mathcal{J} \longrightarrow R^ q(h' \circ j')_* e_ V^{-1}\mathcal{J} \]

is injective. Thus $\xi $ maps to a nonzero element of $(R^ q(h' \circ j')_* e_ V^{-1}\mathcal{J})_{\overline{x}}$. Applying part (3) of Lemma 59.88.2 to the injection $j^{-1}\mathcal{F}' \to \mathcal{J}$ we conclude that $P(V)$ holds. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0F07. Beware of the difference between the letter 'O' and the digit '0'.