Lemma 59.55.3. Consider a cartesian square
of schemes with $f$ a finite morphism. For any sheaf of sets $\mathcal{F}$ on $X_{\acute{e}tale}$ we have $f'_*(g')^{-1}\mathcal{F} = g^{-1}f_*\mathcal{F}$.
Lemma 59.55.3. Consider a cartesian square
of schemes with $f$ a finite morphism. For any sheaf of sets $\mathcal{F}$ on $X_{\acute{e}tale}$ we have $f'_*(g')^{-1}\mathcal{F} = g^{-1}f_*\mathcal{F}$.
Proof. In great generality there is a pullback map $g^{-1}f_*\mathcal{F} \to f'_*(g')^{-1}\mathcal{F}$, see Sites, Section 7.45. It suffices to check on stalks (Theorem 59.29.10). Let $\overline{y}' : \mathop{\mathrm{Spec}}(k) \to Y'$ be a geometric point. We have
The first equality by Proposition 59.55.2. The second equality by Lemma 59.36.2. The third equality holds because the diagram is a cartesian square and hence the map
sending $\overline{x}'$ to $g' \circ \overline{x}'$ is a bijection. The fourth equality by Proposition 59.55.2. The fifth equality by Lemma 59.36.2. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: