Lemma 29.47.2. Being seminormal or being absolutely weakly normal is a local property of rings, see Properties, Definition 28.4.1.
Proof. Suppose that $A$ is seminormal and $f \in A$. Let $x', y' \in A_ f$ with $(x')^3 = (y')^2$. Write $x' = x/f^{2n}$ and $y' = y/f^{3n}$ for some $n \geq 0$ and $x, y \in A$. After replacing $x, y$ by $f^{2m}x, f^{3m}y$ and $n$ by $n + m$, we see that $x^3 = y^2$ in $A$. Then we find a unique $a \in A$ with $x = a^2$ and $y = a^3$. Setting $a' = a/f^ n$ we get $x' = (a')^2$ and $y' = (a')^3$ as desired. Uniqueness of $a'$ follows from uniqueness of $a$. In exactly the same manner the reader shows that if $A$ is absolutely weakly normal, then $A_ f$ is absolutely weakly normal.
Assume $A$ is a ring and $f_1, \ldots , f_ n \in A$ generate the unit ideal. Assume $A_{f_ i}$ is seminormal for each $i$. Let $x, y \in A$ with $x^3 = y^2$. For each $i$ we find a unique $a_ i \in A_{f_ i}$ with $x = a_ i^2$ and $y = a_ i^3$ in $A_{f_ i}$. By the uniqueness and the result of the first paragraph (which tells us that $A_{f_ if_ j}$ is seminormal) we see that $a_ i$ and $a_ j$ map to the same element of $A_{f_ if_ j}$. By Algebra, Lemma 10.24.2 we find a unique $a \in A$ mapping to $a_ i$ in $A_{f_ i}$ for all $i$. Then $x = a^2$ and $y = a^3$ by the same token. Clearly this $a$ is unique. Thus $A$ is seminormal. If we assume $A_{f_ i}$ is absolutely weakly normal, then the exact same argument shows that $A$ is absolutely weakly normal. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: