The Stacks project

Lemma 10.56.1. Let $S$ be a graded ring. Let $M$ be a graded $S$-module.

  1. If $S_+M = M$ and $M$ is finite, then $M = 0$.

  2. If $N, N' \subset M$ are graded submodules, $M = N + S_+N'$, and $N'$ is finite, then $M = N$.

  3. If $N \to M$ is a map of graded modules, $N/S_+N \to M/S_+M$ is surjective, and $M$ is finite, then $N \to M$ is surjective.

  4. If $x_1, \ldots , x_ n \in M$ are homogeneous and generate $M/S_+M$ and $M$ is finite, then $x_1, \ldots , x_ n$ generate $M$.

Proof. Proof of (1). Choose generators $y_1, \ldots , y_ r$ of $M$ over $S$. We may assume that $y_ i$ is homogeneous of degree $d_ i$. After renumbering we may assume $d_ r = \min (d_ i)$. Then the condition that $S_+M = M$ implies $y_ r = 0$. Hence $M = 0$ by induction on $r$. Part (2) follows by applying (1) to $M/N$. Part (3) follows by applying (2) to the submodules $\mathop{\mathrm{Im}}(N \to M)$ and $M$. Part (4) follows by applying (3) to the module map $\bigoplus S(-d_ i) \to M$, $(s_1, \ldots , s_ n) \mapsto \sum s_ i x_ i$. $\square$


Comments (2)

Comment #5356 by Peter Bruin on

In the proof of (1), shouldn't be ?

There are also:

  • 3 comment(s) on Section 10.56: Graded rings

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0EKB. Beware of the difference between the letter 'O' and the digit '0'.