The Stacks project

Lemma 10.78.9. Let $R$ be ring. Let $L$, $M$, $N$ be $R$-modules. The canonical map

\[ \mathop{\mathrm{Hom}}\nolimits _ R(M, N) \otimes _ R L \to \mathop{\mathrm{Hom}}\nolimits _ R(M, N \otimes _ R L) \]

is an isomorphism if $M$ is finite projective.

Proof. By Lemma 10.78.2 we see that $M$ is finitely presented as well as finite locally free. By Lemmas 10.10.2 and 10.12.16 formation of the left and right hand side of the arrow commutes with localization. We may check that our map is an isomorphism after localization, see Lemma 10.23.2. Thus we may assume $M$ is finite free. In this case the lemma is immediate. $\square$


Comments (3)

Comment #2818 by Jonathan Gruner on

Let be ring map. -> Let be a ring.

Comment #9857 by Junyan Xu on

Isn't it easier to use that M is a direct summand of a finite free module?

There are also:

  • 4 comment(s) on Section 10.78: Finite projective modules

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DVB. Beware of the difference between the letter 'O' and the digit '0'.