The Stacks project

Lemma 101.7.10. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. Let $W \to \mathcal{Y}$ be surjective, flat, and locally of finite presentation where $W$ is an algebraic space. If the base change $W \times _\mathcal {Y} \mathcal{X} \to W$ is quasi-compact, then $f$ is quasi-compact.

Proof. Assume $W \times _\mathcal {Y} \mathcal{X} \to W$ is quasi-compact. Let $\mathcal{Z} \to \mathcal{Y}$ be a morphism with $\mathcal{Z}$ a quasi-compact algebraic stack. Choose a scheme $U$ and a surjective smooth morphism $U \to W \times _\mathcal {Y} \mathcal{Z}$. Since $U \to \mathcal{Z}$ is flat, surjective, and locally of finite presentation and $\mathcal{Z}$ is quasi-compact, we can find a quasi-compact open subscheme $U' \subset U$ such that $U' \to \mathcal{Z}$ is surjective. Then $U' \times _\mathcal {Y} \mathcal{X} = U' \times _ W (W \times _\mathcal {Y} \mathcal{X})$ is quasi-compact by assumption and surjects onto $\mathcal{Z} \times _\mathcal {Y} \mathcal{X}$. Hence $\mathcal{Z} \times _\mathcal {Y} \mathcal{X}$ is quasi-compact as desired. $\square$


Comments (2)

Comment #7435 by Anonymous on

Typo: In the second to last sentence of the proof, we should have instead of .


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DTL. Beware of the difference between the letter 'O' and the digit '0'.