Lemma 15.83.3. Let $R \to A$ be a flat ring map of finite presentation. A perfect object of $D(A)$ is $R$-perfect. If $K, M \in D(A)$ then $K \otimes _ A^\mathbf {L} M$ is $R$-perfect if $K$ is perfect and $M$ is $R$-perfect.
Proof. The first statement follows from the second by taking $M = A$. The second statement follows from Lemmas 15.74.2, 15.66.10, and 15.64.16. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)