The Stacks project

Lemma 15.64.16. Let $R$ be a ring. Let $K, L$ be objects of $D(R)$.

  1. If $K$ is $n$-pseudo-coherent and $H^ i(K) = 0$ for $i > a$ and $L$ is $m$-pseudo-coherent and $H^ j(L) = 0$ for $j > b$, then $K \otimes _ R^\mathbf {L} L$ is $t$-pseudo-coherent with $t = \max (m + a, n + b)$.

  2. If $K$ and $L$ are pseudo-coherent, then $K \otimes _ R^\mathbf {L} L$ is pseudo-coherent.

Proof. Proof of (1). We may assume there exist bounded complexes $K^\bullet $ and $L^\bullet $ of finite free $R$-modules and maps $\alpha : K^\bullet \to K$ and $\beta : L^\bullet \to L$ with $H^ i(\alpha )$ and isomorphism for $i > n$ and surjective for $i = n$ and with $H^ i(\beta )$ and isomorphism for $i > m$ and surjective for $i = m$. Then the map

\[ \alpha \otimes ^\mathbf {L} \beta : \text{Tot}(K^\bullet \otimes _ R L^\bullet ) \to K \otimes _ R^\mathbf {L} L \]

induces isomorphisms on cohomology in degree $i$ for $i > t$ and a surjection for $i = t$. This follows from the spectral sequence of tors (details omitted). Part (2) follows from part (1) and Lemma 15.64.5. $\square$


Comments (0)

There are also:

  • 11 comment(s) on Section 15.64: Pseudo-coherent modules, I

Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0DJE. Beware of the difference between the letter 'O' and the digit '0'.