Example 85.23.1. Let $S$ be a scheme and let $X$ be an algebraic space over $S$. Let $\mathcal{C} = X_{spaces, {\acute{e}tale}}$ be the étale site on the category of algebraic spaces étale over $X$, see Properties of Spaces, Definition 66.18.2. Denote $\mathcal{O}_\mathcal {C}$ the structure sheaf, i.e., the sheaf given by the rule $U \mapsto \Gamma (U, \mathcal{O}_ U)$. Denote $\mathcal{A}_ U$ the category of quasi-coherent $\mathcal{O}_ U$-modules. Let $\mathcal{B} = \mathop{\mathrm{Ob}}\nolimits (\mathcal{C})$ and for $V \in \mathcal{B}$ set $d_ V = 0$ and let $\text{Cov}_ V$ denote the coverings $\{ V_ i \to V\} $ with $V_ i$ affine for all $i$. Then the assumptions (1), (2), (3) are satisfied. See Properties of Spaces, Lemmas 66.29.2 and 66.29.7 for properties (1) and (2) and the vanishing in (3) follows from Cohomology of Schemes, Lemma 30.2.2 and the discussion in Cohomology of Spaces, Section 69.3.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)