The Stacks project

69.3 Higher direct images

Let $S$ be a scheme. Let $X$ be a representable algebraic space over $S$. Let $\mathcal{F}$ be a quasi-coherent module on $X$ (see Properties of Spaces, Section 66.29). By Descent, Proposition 35.9.3 the cohomology groups $H^ i(X, \mathcal{F})$ agree with the usual cohomology group computed in the Zariski topology of the corresponding quasi-coherent module on the scheme representing $X$.

More generally, let $f : X \to Y$ be a quasi-compact and quasi-separated morphism of representable algebraic spaces $X$ and $Y$. Let $\mathcal{F}$ be a quasi-coherent module on $X$. By Descent, Lemma 35.9.5 the sheaf $R^ if_*\mathcal{F}$ agrees with the usual higher direct image computed for the Zariski topology of the quasi-coherent module on the scheme representing $X$ mapping to the scheme representing $Y$.

More generally still, suppose $f : X \to Y$ is a representable, quasi-compact, and quasi-separated morphism of algebraic spaces over $S$. Let $V$ be a scheme and let $V \to Y$ be an étale surjective morphism. Let $U = V \times _ Y X$ and let $f' : U \to V$ be the base change of $f$. Then for any quasi-coherent $\mathcal{O}_ X$-module $\mathcal{F}$ we have

69.3.0.1
\begin{equation} \label{spaces-cohomology-equation-representable-higher-direct-image} R^ if'_*(\mathcal{F}|_ U) = (R^ if_*\mathcal{F})|_ V, \end{equation}

see Properties of Spaces, Lemma 66.26.2. And because $f' : U \to V$ is a quasi-compact and quasi-separated morphism of schemes, by the remark of the preceding paragraph we may compute $R^ if'_*(\mathcal{F}|_ U)$ by thinking of $\mathcal{F}|_ U$ as a quasi-coherent sheaf on the scheme $U$, and $f'$ as a morphism of schemes. We will frequently use this without further mention.

Next, we prove that higher direct images of quasi-coherent sheaves are quasi-coherent for any quasi-compact and quasi-separated morphism of algebraic spaces. In the proof we use a trick; a “better” proof would use a relative Čech complex, as discussed in Sheaves on Stacks, Sections 96.18 and 96.19 ff.

Lemma 69.3.1. Let $S$ be a scheme. Let $f : X \to Y$ be a morphism of algebraic spaces over $S$. If $f$ is quasi-compact and quasi-separated, then $R^ if_*$ transforms quasi-coherent $\mathcal{O}_ X$-modules into quasi-coherent $\mathcal{O}_ Y$-modules.

Proof. Let $V \to Y$ be an étale morphism where $V$ is an affine scheme. Set $U = V \times _ Y X$ and denote $f' : U \to V$ the induced morphism. Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. By Properties of Spaces, Lemma 66.26.2 we have $R^ if'_*(\mathcal{F}|_ U) = (R^ if_*\mathcal{F})|_ V$. Since the property of being a quasi-coherent module is local in the étale topology on $Y$ (see Properties of Spaces, Lemma 66.29.6) we may replace $Y$ by $V$, i.e., we may assume $Y$ is an affine scheme.

Assume $Y$ is affine. Since $f$ is quasi-compact we see that $X$ is quasi-compact. Thus we may choose an affine scheme $U$ and a surjective étale morphism $g : U \to X$, see Properties of Spaces, Lemma 66.6.3. Picture

\[ \xymatrix{ U \ar[r]_ g \ar[rd]_{f \circ g} & X \ar[d]^ f \\ & Y } \]

The morphism $g : U \to X$ is representable, separated and quasi-compact because $X$ is quasi-separated. Hence the lemma holds for $g$ (by the discussion above the lemma). It also holds for $f \circ g : U \to Y$ (as this is a morphism of affine schemes).

In the situation described in the previous paragraph we will show by induction on $n$ that $IH_ n$: for any quasi-coherent sheaf $\mathcal{F}$ on $X$ the sheaves $R^ if\mathcal{F}$ are quasi-coherent for $i \leq n$. The case $n = 0$ follows from Morphisms of Spaces, Lemma 67.11.2. Assume $IH_ n$. In the rest of the proof we show that $IH_{n + 1}$ holds.

Let $\mathcal{H}$ be a quasi-coherent $\mathcal{O}_ U$-module. Consider the Leray spectral sequence

\[ E_2^{p, q} = R^ pf_* R^ qg_* \mathcal{H} \Rightarrow R^{p + q}(f \circ g)_*\mathcal{H} \]

Cohomology on Sites, Lemma 21.14.7. As $R^ qg_*\mathcal{H}$ is quasi-coherent by $IH_ n$ all the sheaves $R^ pf_*R^ qg_*\mathcal{H}$ are quasi-coherent for $p \leq n$. The sheaves $R^{p + q}(f \circ g)_*\mathcal{H}$ are all quasi-coherent (in fact zero for $p + q > 0$ but we do not need this). Looking in degrees $\leq n + 1$ the only module which we do not yet know is quasi-coherent is $E_2^{n + 1, 0} = R^{n + 1}f_*g_*\mathcal{H}$. Moreover, the differentials $d_ r^{n + 1, 0} : E_ r^{n + 1, 0} \to E_ r^{n + 1 + r, 1 - r}$ are zero as the target is zero. Using that $\mathit{QCoh}(\mathcal{O}_ X)$ is a weak Serre subcategory of $\textit{Mod}(\mathcal{O}_ X)$ (Properties of Spaces, Lemma 66.29.7) it follows that $R^{n + 1}f_*g_*\mathcal{H}$ is quasi-coherent (details omitted).

Let $\mathcal{F}$ be a quasi-coherent $\mathcal{O}_ X$-module. Set $\mathcal{H} = g^*\mathcal{F}$. The adjunction mapping $\mathcal{F} \to g_*g^*\mathcal{F} = g_*\mathcal{H}$ is injective as $U \to X$ is surjective étale. Consider the exact sequence

\[ 0 \to \mathcal{F} \to g_*\mathcal{H} \to \mathcal{G} \to 0 \]

where $\mathcal{G}$ is the cokernel of the first map and in particular quasi-coherent. Applying the long exact cohomology sequence we obtain

\[ R^ nf_*g_*\mathcal{H} \to R^ nf_*\mathcal{G} \to R^{n + 1}f_*\mathcal{F} \to R^{n + 1}f_*g_*\mathcal{H} \to R^{n + 1}f_*\mathcal{G} \]

The cokernel of the first arrow is quasi-coherent and we have seen above that $R^{n + 1}f_*g_*\mathcal{H}$ is quasi-coherent. Thus $R^{n + 1}f_*\mathcal{F}$ has a $2$-step filtration where the first step is quasi-coherent and the second a submodule of a quasi-coherent sheaf. Since $\mathcal{F}$ is an arbitrary quasi-coherent $\mathcal{O}_ X$-module, this result also holds for $\mathcal{G}$. Thus we can choose an exact sequence $0 \to \mathcal{A} \to R^{n + 1}f_*\mathcal{G} \to \mathcal{B}$ with $\mathcal{A}$, $\mathcal{B}$ quasi-coherent $\mathcal{O}_ Y$-modules. Then the kernel $\mathcal{K}$ of $R^{n + 1}f_*g_*\mathcal{H} \to R^{n + 1}f_*\mathcal{G} \to \mathcal{B}$ is quasi-coherent, whereupon we obtain a map $\mathcal{K} \to \mathcal{A}$ whose kernel $\mathcal{K}'$ is quasi-coherent too. Hence $R^{n + 1}f_*\mathcal{F}$ sits in an exact sequence

\[ R^ nf_*g_*\mathcal{H} \to R^ nf_*\mathcal{G} \to R^{n + 1}f_*\mathcal{F} \to \mathcal{K}' \to 0 \]

with all modules quasi-coherent except for possibly $R^{n + 1}f_*\mathcal{F}$. We conclude that $R^{n + 1}f_*\mathcal{F}$ is quasi-coherent, i.e., $IH_{n + 1}$ holds as desired. $\square$

Lemma 69.3.2. Let $S$ be a scheme. Let $f : X \to Y$ be a quasi-separated and quasi-compact morphism of algebraic spaces over $S$. For any quasi-coherent $\mathcal{O}_ X$-module $\mathcal{F}$ and any affine object $V$ of $Y_{\acute{e}tale}$ we have

\[ H^ q(V \times _ Y X, \mathcal{F}) = H^0(V, R^ qf_*\mathcal{F}) \]

for all $q \in \mathbf{Z}$.

Proof. Since formation of $Rf_*$ commutes with étale localization (Properties of Spaces, Lemma 66.26.2) we may replace $Y$ by $V$ and assume $Y = V$ is affine. Consider the Leray spectral sequence $E_2^{p, q} = H^ p(Y, R^ qf_*\mathcal{F})$ converging to $H^{p + q}(X, \mathcal{F})$, see Cohomology on Sites, Lemma 21.14.5. By Lemma 69.3.1 we see that the sheaves $R^ qf_*\mathcal{F}$ are quasi-coherent. By Cohomology of Schemes, Lemma 30.2.2 we see that $E_2^{p, q} = 0$ when $p > 0$. Hence the spectral sequence degenerates at $E_2$ and we win. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 071Y. Beware of the difference between the letter 'O' and the digit '0'.