Lemma 99.4.2. In Situation 99.3.1. Let $T$ be an algebraic space over $S$. We have
where $\mathcal{F}_ T, \mathcal{G}_ T$ denote the pullbacks of $\mathcal{F}$ and $\mathcal{G}$ to the algebraic space $X \times _{B, h} T$.
Lemma 99.4.2. In Situation 99.3.1. Let $T$ be an algebraic space over $S$. We have
where $\mathcal{F}_ T, \mathcal{G}_ T$ denote the pullbacks of $\mathcal{F}$ and $\mathcal{G}$ to the algebraic space $X \times _{B, h} T$.
Proof. Observe that the left and right hand side of the equality are subsets of the left and right hand side of the equality in Lemma 99.3.3. We omit the verification that these subsets correspond under the identification given in the proof of that lemma. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)