Lemma 99.3.3. In Situation 99.3.1. Let $T$ be an algebraic space over $S$. We have
where $\mathcal{F}_ T, \mathcal{G}_ T$ denote the pullbacks of $\mathcal{F}$ and $\mathcal{G}$ to the algebraic space $X \times _{B, h} T$.
Lemma 99.3.3. In Situation 99.3.1. Let $T$ be an algebraic space over $S$. We have
where $\mathcal{F}_ T, \mathcal{G}_ T$ denote the pullbacks of $\mathcal{F}$ and $\mathcal{G}$ to the algebraic space $X \times _{B, h} T$.
Proof. Choose a scheme $U$ and a surjective étale morphism $p : U \to T$. Let $R = U \times _ T U$ with projections $t, s : R \to U$.
Let $v : T \to \mathit{Hom}(\mathcal{F}, \mathcal{G})$ be a natural transformation. Then $v(p)$ corresponds to a pair $(h_ U, u_ U)$ over $U$. As $v$ is a transformation of functors we see that the pullbacks of $(h_ U, u_ U)$ by $s$ and $t$ agree. Since $T = U/R$ (Spaces, Lemma 65.9.1), we obtain a morphism $h : T \to B$ such that $h_ U = h \circ p$. Then $\mathcal{F}_ U$ is the pullback of $\mathcal{F}_ T$ to $X_ U$ and similarly for $\mathcal{G}_ U$. Hence $u_ U$ descends to a $\mathcal{O}_{X_ T}$-module map $u : \mathcal{F}_ T \to \mathcal{G}_ T$ by Descent on Spaces, Proposition 74.4.1.
Conversely, let $(h, u)$ be a pair over $T$. Then we get a natural transformation $v : T \to \mathit{Hom}(\mathcal{F}, \mathcal{G})$ by sending a morphism $a : T' \to T$ where $T'$ is a scheme to $(h \circ a, a^*u)$. We omit the verification that the construction of this and the previous paragraph are mutually inverse. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: