The Stacks project

Lemma 37.13.4. Let $f : X \to Y$ be a morphism of schemes. If $f$ is locally of finite presentation, then $\mathop{N\! L}\nolimits _{X/Y}$ is locally on $X$ quasi-isomorphic to a complex

\[ \ldots \to 0 \to \mathcal{F}^{-1} \to \mathcal{F}^0 \to 0 \to \ldots \]

of quasi-coherent $\mathcal{O}_ X$-modules with $\mathcal{F}^0$ of finite presentation and $\mathcal{F}^{-1}$ of finite type.

Proof. By Lemma 37.13.2 it suffices to show that $\mathop{N\! L}\nolimits _{A/R}$ has this shape if $R \to A$ is a finitely presented ring map. Write $A = R[x_1, \ldots , x_ n]/I$ with $I$ finitely generated. Then $I/I^2$ is a finite $A$-module and $\mathop{N\! L}\nolimits _{A/R}$ is quasi-isomorphic to

\[ \ldots \to 0 \to I/I^2 \to \bigoplus \nolimits _{i = 1, \ldots , n} A\text{d}x_ i \to 0 \to \ldots \]

by Algebra, Section 10.134 and in particular Algebra, Lemma 10.134.2. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0D0K. Beware of the difference between the letter 'O' and the digit '0'.