The Stacks project

Lemma 71.4.8. With notation and assumptions as in Lemma 71.4.7. Assume $g$ is locally quasi-finite, or more generally that for every $y' \in |Y'|$ the transcendence degree of $y'/g(y')$ is $0$. Then $\text{Ass}_{X'/Y'}(\mathcal{F}')$ is the inverse image of $\text{Ass}_{X/Y}(\mathcal{F})$.

Proof. The transcendence degree of a point over its image is defined in Morphisms of Spaces, Definition 67.33.1. Let $x' \in |X'|$ with image $x \in |X|$. Choose a scheme $V$ and a surjective étale morphism $V \to Y$. Choose a scheme $U$ and a surjective étale morphism $U \to V \times _ Y X$. Choose a scheme $V'$ and a surjective étale morphism $V' \to V \times _ Y Y'$. Then $U' = V' \times _ V U$ is a scheme and the morphism $U' \to X'$ is surjective and étale. Choose $u \in U$ mapping to $x$. Denote $v \in V$ the image of $u$. Then $x \in \text{Ass}_{X/Y}(\mathcal{F})$ is equivalent to $u \in \text{Ass}(\mathcal{F}|_{U_ v})$ by definition. Choose a point $u' \in U'$ mapping to $x' \in |X'|$ and to $u \in U$ (possible by Properties of Spaces, Lemma 66.4.3). Let $v' \in V'$ be the image of $u'$. Then $x' \in \text{Ass}_{X'/Y'}(\mathcal{F}')$ is equivalent to $u' \in \text{Ass}(\mathcal{F}'|_{U'_{v'}})$ by definition. Now the lemma follows from the discussion in Divisors, Remark 31.7.4 applied to $u' \in \mathop{\mathrm{Spec}}(\kappa (v') \otimes _{\kappa (v)} \kappa (u))$. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0CV3. Beware of the difference between the letter 'O' and the digit '0'.