Lemma 13.40.2. Let $\mathcal{D}$ be a triangulated category. Let $\mathcal{A} \subset \mathcal{D}$ be a full subcategory invariant under all shifts. Consider a distinguished triangle
\[ X \to Y \to Z \to X[1] \]
of $\mathcal{D}$. The following are equivalent
$Z$ is in $\mathcal{A}^\perp $, and
$\mathop{\mathrm{Hom}}\nolimits (A, X) = \mathop{\mathrm{Hom}}\nolimits (A, Y)$ for all $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$.
Proof.
By Lemma 13.4.2 the functor $\mathop{\mathrm{Hom}}\nolimits (A, -)$ is homological and hence we get a long exact sequence as in (13.3.5.1). Assume (1) and let $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$. Then we consider the exact sequence
\[ \mathop{\mathrm{Hom}}\nolimits (A[1], Z) \to \mathop{\mathrm{Hom}}\nolimits (A, X) \to \mathop{\mathrm{Hom}}\nolimits (A, Y) \to \mathop{\mathrm{Hom}}\nolimits (A, Z) \]
Since $A[1] \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$ we see that the first and last groups are zero. Thus we get (2). Assume (2) and let $A \in \mathop{\mathrm{Ob}}\nolimits (\mathcal{A})$. Then we consider the exact sequence
\[ \mathop{\mathrm{Hom}}\nolimits (A, X) \to \mathop{\mathrm{Hom}}\nolimits (A, Y) \to \mathop{\mathrm{Hom}}\nolimits (A, Z) \to \mathop{\mathrm{Hom}}\nolimits (A[-1], X) \to \mathop{\mathrm{Hom}}\nolimits (A[-1], Y) \]
and we conclude that $\mathop{\mathrm{Hom}}\nolimits (A, Z) = 0$ as desired.
$\square$
Comments (0)
There are also: