Lemma 32.22.8. Notation and assumptions as in Lemma 32.22.4. If $f$ is proper, then there exists an $i_3 \geq i_0$ such that for $i \geq i_3$ we have $f_ i$ is proper.
Proof. By the discussion in Remark 32.22.5 the choice of $i_1$ and $W$ fitting into a diagram as in (32.22.2.1) is immaterial for the truth of the lemma. Thus we choose $W$ as follows. First we choose a closed immersion $X \to X'$ with $X' \to S$ proper and of finite presentation, see Lemma 32.13.2. Then we choose an $i_3 \geq i_2$ and a proper morphism $W \to Y_{i_3}$ such that $X' = Y \times _{Y_{i_3}} W$. This is possible because $Y = \mathop{\mathrm{lim}}\nolimits _{i \geq i_2} Y_ i$ and Lemmas 32.10.1 and 32.13.1. With this choice of $W$ it is immediate from the construction that for $i \geq i_3$ the scheme $X_ i$ is a closed subscheme of $Y_ i \times _{Y_{i_3}} W \subset S_ i \times _{S_{i_3}} W$ and hence proper over $Y_ i$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)