The Stacks project

Lemma 32.10.1. Let $I$ be a directed set. Let $(S_ i, f_{ii'})$ be an inverse system of schemes over $I$. Assume

  1. the morphisms $f_{ii'} : S_ i \to S_{i'}$ are affine,

  2. the schemes $S_ i$ are quasi-compact and quasi-separated.

Let $S = \mathop{\mathrm{lim}}\nolimits _ i S_ i$. Then we have the following:

  1. For any morphism of finite presentation $X \to S$ there exists an index $i \in I$ and a morphism of finite presentation $X_ i \to S_ i$ such that $X \cong X_{i, S}$ as schemes over $S$.

  2. Given an index $i \in I$, schemes $X_ i$, $Y_ i$ of finite presentation over $S_ i$, and a morphism $\varphi : X_{i, S} \to Y_{i, S}$ over $S$, there exists an index $i' \geq i$ and a morphism $\varphi _{i'} : X_{i, S_{i'}} \to Y_{i, S_{i'}}$ whose base change to $S$ is $\varphi $.

  3. Given an index $i \in I$, schemes $X_ i$, $Y_ i$ of finite presentation over $S_ i$ and a pair of morphisms $\varphi _ i, \psi _ i : X_ i \to Y_ i$ whose base changes $\varphi _{i, S} = \psi _{i, S}$ are equal, there exists an index $i' \geq i$ such that $\varphi _{i, S_{i'}} = \psi _{i, S_{i'}}$.

In other words, the category of schemes of finite presentation over $S$ is the colimit over $I$ of the categories of schemes of finite presentation over $S_ i$.

Proof. In case each of the schemes $S_ i$ is affine, and we consider only affine schemes of finite presentation over $S_ i$, resp. $S$ this lemma is equivalent to Algebra, Lemma 10.127.8. We claim that the affine case implies the lemma in general.

Let us prove (3). Suppose given an index $i \in I$, schemes $X_ i$, $Y_ i$ of finite presentation over $S_ i$ and a pair of morphisms $\varphi _ i, \psi _ i : X_ i \to Y_ i$. Assume that the base changes are equal: $\varphi _{i, S} = \psi _{i, S}$. We will use the notation $X_{i'} = X_{i, S_{i'}}$ and $Y_{i'} = Y_{i, S_{i'}}$ for $i' \geq i$. We also set $X = X_{i, S}$ and $Y = Y_{i, S}$. Note that according to Lemma 32.2.3 we have $X = \mathop{\mathrm{lim}}\nolimits _{i' \geq i} X_{i'}$ and similarly for $Y$. Additionally we denote $\varphi _{i'}$ and $\psi _{i'}$ (resp. $\varphi $ and $\psi $) the base change of $\varphi _ i$ and $\psi _ i$ to $S_{i'}$ (resp. $S$). So our assumption means that $\varphi = \psi $. Since $Y_ i$ and $X_ i$ are of finite presentation over $S_ i$, and since $S_ i$ is quasi-compact and quasi-separated, also $X_ i$ and $Y_ i$ are quasi-compact and quasi-separated (see Morphisms, Lemma 29.21.10). Hence we may choose a finite affine open covering $Y_ i = \bigcup V_{j, i}$ such that each $V_{j, i}$ maps into an affine open of $S$. As above, denote $V_{j, i'}$ the inverse image of $V_{j, i}$ in $Y_{i'}$ and $V_ j$ the inverse image in $Y$. The immersions $V_{j, i'} \to Y_{i'}$ are quasi-compact, and the inverse images $U_{j, i'} = \varphi _ i^{-1}(V_{j, i'})$ and $U_{j, i'}' = \psi _ i^{-1}(V_{j, i'})$ are quasi-compact opens of $X_{i'}$. By assumption the inverse images of $V_ j$ under $\varphi $ and $\psi $ in $X$ are equal. Hence by Lemma 32.4.11 there exists an index $i' \geq i$ such that of $U_{j, i'} = U_{j, i'}'$ in $X_{i'}$. Choose an finite affine open covering $U_{j, i'} = U_{j, i'}' = \bigcup W_{j, k, i'}$ which induce coverings $U_{j, i''} = U_{j, i''}' = \bigcup W_{j, k, i''}$ for all $i'' \geq i'$. By the affine case there exists an index $i''$ such that $\varphi _{i''}|_{W_{j, k, i''}} = \psi _{i''}|_{W_{j, k, i''}}$ for all $j, k$. Then $i''$ is an index such that $\varphi _{i''} = \psi _{i''}$ and (3) is proved.

Let us prove (2). Suppose given an index $i \in I$, schemes $X_ i$, $Y_ i$ of finite presentation over $S_ i$ and a morphism $\varphi : X_{i, S} \to Y_{i, S}$. We will use the notation $X_{i'} = X_{i, S_{i'}}$ and $Y_{i'} = Y_{i, S_{i'}}$ for $i' \geq i$. We also set $X = X_{i, S}$ and $Y = Y_{i, S}$. Note that according to Lemma 32.2.3 we have $X = \mathop{\mathrm{lim}}\nolimits _{i' \geq i} X_{i'}$ and similarly for $Y$. Since $Y_ i$ and $X_ i$ are of finite presentation over $S_ i$, and since $S_ i$ is quasi-compact and quasi-separated, also $X_ i$ and $Y_ i$ are quasi-compact and quasi-separated (see Morphisms, Lemma 29.21.10). Hence we may choose a finite affine open covering $Y_ i = \bigcup V_{j, i}$ such that each $V_{j, i}$ maps into an affine open of $S$. As above, denote $V_{j, i'}$ the inverse image of $V_{j, i}$ in $Y_{i'}$ and $V_ j$ the inverse image in $Y$. The immersions $V_ j \to Y$ are quasi-compact, and the inverse images $U_ j = \varphi ^{-1}(V_ j)$ are quasi-compact opens of $X$. Hence by Lemma 32.4.11 there exists an index $i' \geq i$ and quasi-compact opens $U_{j, i'}$ of $X_{i'}$ whose inverse image in $X$ is $U_ j$. Choose an finite affine open covering $U_{j, i'} = \bigcup W_{j, k, i'}$ which induce affine open coverings $U_{j, i''} = \bigcup W_{j, k, i''}$ for all $i'' \geq i'$ and an affine open covering $U_ j = \bigcup W_{j, k}$. By the affine case there exists an index $i''$ and morphisms $\varphi _{j, k, i''} : W_{j, k, i''} \to V_{j, i''}$ such that $\varphi |_{W_{j, k}} = \varphi _{j, k, i'', S}$ for all $j, k$. By part (3) proved above, there is a further index $i''' \geq i''$ such that

\[ \varphi _{j_1, k_1, i'', S_{i'''}}|_{W_{j_1, k_1, i'''} \cap W_{j_2, k_2, i'''}} = \varphi _{j_2, k_2, i'', S_{i'''}}|_{W_{j_1, k_1, i'''} \cap W_{j_2, k_2, i'''}} \]

for all $j_1, j_2, k_1, k_2$. Then $i'''$ is an index such that there exists a morphism $\varphi _{i'''} : X_{i'''} \to Y_{i'''}$ whose base change to $S$ gives $\varphi $. Hence (2) holds.

Let us prove (1). Suppose given a scheme $X$ of finite presentation over $S$. Since $X$ is of finite presentation over $S$, and since $S$ is quasi-compact and quasi-separated, also $X$ is quasi-compact and quasi-separated (see Morphisms, Lemma 29.21.10). Choose a finite affine open covering $X = \bigcup U_ j$ such that each $U_ j$ maps into an affine open $V_ j \subset S$. Denote $U_{j_1j_2} = U_{j_1} \cap U_{j_2}$ and $U_{j_1j_2j_3} = U_{j_1} \cap U_{j_2} \cap U_{j_3}$. By Lemmas 32.4.11 and 32.4.13 we can find an index $i_1$ and affine opens $V_{j, i_1} \subset S_{i_1}$ such that each $V_ j$ is the inverse of this in $S$. Let $V_{j, i}$ be the inverse image of $V_{j, i_1}$ in $S_ i$ for $i \geq i_1$. By the affine case we may find an index $i_2 \geq i_1$ and affine schemes $U_{j, i_2} \to V_{j, i_2}$ such that $U_ j = S \times _{S_{i_2}} U_{j, i_2}$ is the base change. Denote $U_{j, i} = S_ i \times _{S_{i_2}} U_{j, i_2}$ for $i \geq i_2$. By Lemma 32.4.11 there exists an index $i_3 \geq i_2$ and open subschemes $W_{j_1, j_2, i_3} \subset U_{j_1, i_3}$ whose base change to $S$ is equal to $U_{j_1j_2}$. Denote $W_{j_1, j_2, i} = S_ i \times _{S_{i_3}} W_{j_1, j_2, i_3}$ for $i \geq i_3$. By part (2) shown above there exists an index $i_4 \geq i_3$ and morphisms $\varphi _{j_1, j_2, i_4} : W_{j_1, j_2, i_4} \to W_{j_2, j_1, i_4}$ whose base change to $S$ gives the identity morphism $U_{j_1j_2} = U_{j_2j_1}$ for all $j_1, j_2$. For all $i \geq i_4$ denote $\varphi _{j_1, j_2, i} = \text{id}_ S \times \varphi _{j_1, j_2, i_4}$ the base change. We claim that for some $i_5 \geq i_4$ the system $((U_{j, i_5})_ j, (W_{j_1, j_2, i_5})_{j_1, j_2}, (\varphi _{j_1, j_2, i_5})_{j_1, j_2})$ forms a glueing datum as in Schemes, Section 26.14. In order to see this we have to verify that for $i$ large enough we have

\[ \varphi _{j_1, j_2, i}^{-1}(W_{j_1, j_2, i} \cap W_{j_1, j_3, i}) = W_{j_1, j_2, i} \cap W_{j_1, j_3, i} \]

and that for large enough $i$ the cocycle condition holds. The first condition follows from Lemma 32.4.11 and the fact that $U_{j_2j_1j_3} = U_{j_1j_2j_3}$. The second from part (1) of the lemma proved above and the fact that the cocycle condition holds for the maps $\text{id} : U_{j_1j_2} \to U_{j_2j_1}$. Ok, so now we can use Schemes, Lemma 26.14.2 to glue the system $((U_{j, i_5})_ j, (W_{j_1, j_2, i_5})_{j_1, j_2}, (\varphi _{j_1, j_2, i_5})_{j_1, j_2})$ to get a scheme $X_{i_5} \to S_{i_5}$. By construction the base change of $X_{i_5}$ to $S$ is formed by glueing the open affines $U_ j$ along the opens $U_{j_1} \leftarrow U_{j_1j_2} \rightarrow U_{j_2}$. Hence $S \times _{S_{i_5}} X_{i_5} \cong X$ as desired. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 01ZM. Beware of the difference between the letter 'O' and the digit '0'.