Lemma 101.21.7. Let $f : \mathcal{X} \to \mathcal{Y}$ be a DM morphism of algebraic stacks. Then
For every DM algebraic stack $\mathcal{Z}$ and morphism $\mathcal{Z} \to \mathcal{Y}$ there exists a scheme and a surjective étale morphism $U \to \mathcal{X} \times _\mathcal {Y} \mathcal{Z}$.
For every algebraic space $Z$ and morphism $Z \to \mathcal{Y}$ there exists a scheme and a surjective étale morphism $U \to \mathcal{X} \times _\mathcal {Y} Z$.
Comments (0)