Definition 101.14.2. Let $f : \mathcal{X} \to \mathcal{Y}$ be a morphism of algebraic stacks. We say $f$ is universally injective if for every morphism of algebraic stacks $\mathcal{Z} \to \mathcal{Y}$ the map
\[ |\mathcal{Z} \times _\mathcal {Y} \mathcal{X}| \to |\mathcal{Z}| \]
is injective.
Comments (0)