The Stacks project

55.6 Classification of minimal type for genus zero and one

The title of the section explains it all.

Lemma 55.6.1 (Genus zero). The only minimal numerical type of genus zero is $n = 1$, $m_1 = 1$, $a_{11} = 0$, $w_1 = 1$, $g_1 = 0$.

Lemma 55.6.2 (Genus one). The minimal numerical types of genus one are up to equivalence

  1. $n = 1$, $a_{11} = 0$, $g_1 = 1$, $m_1, w_1 \geq 1$ arbitrary,

  2. $n = 2$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w \\ 2w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  3. $n = 2$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 4w \\ 4w & -8w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 4w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  4. $n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & w \\ w & -2w & w \\ w & w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  5. $n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 \\ w & -2w & 3w \\ 0 & 3w & -6w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ 3w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  6. $n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ 3m \end{matrix} \right), \quad \left( \begin{matrix} -6w & 3w & 0 \\ 3w & -6w & 3w \\ 0 & 3w & -2w \end{matrix} \right), \quad \left( \begin{matrix} 3w \\ 3w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  7. $n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} 2m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 \\ 2w & -4w & 4w \\ 0 & 4w & -8w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 4w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  8. $n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 \\ 2w & -4w & 2w \\ 0 & 2w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  9. $n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 0 \\ 2w & -2w & 2w \\ 0 & 2w & -4w \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  10. $n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & w \\ w & -2w & w & 0 \\ 0 & w & -2w & w \\ w & 0 & w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  11. $n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} 2m \\ 2m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 & 0 \\ 2w & -4w & 2w & 0 \\ 0 & 2w & -4w & 4w \\ 0 & 0 & 4w & -8w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 2w \\ 4w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  12. $n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 & 0 \\ 2w & -4w & 2w & 0 \\ 0 & 2w & -4w & 2w \\ 0 & 0 & 2w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 2w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  13. $n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 0 & 0 \\ 2w & -2w & w & 0 \\ 0 & w & -2w & 2w \\ 0 & 0 & 2w & -4w \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ w \\ w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  14. $n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} 2m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & w & 2w \\ w & -2w & 0 & 0 \\ w & 0 & -2w & 0 \\ 2w & 0 & 0 & -4w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  15. $n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} 2m \\ m \\ m \\ 2m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 2w & 2w \\ 2w & -4w & 0 & 0 \\ 2w & 0 & -4w & 0 \\ 2w & 0 & 0 & -2w \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ 2w \\ 2w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  16. $n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & w \\ w & -2w & w & 0 & 0 \\ 0 & w & -2w & w & 0 \\ 0 & 0 & w & -2w & w \\ w & 0 & 0 & w & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  17. $n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ 3m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & 0 \\ w & -2w & w & 0 & 0 \\ 0 & w & -2w & 2w & 0 \\ 0 & 0 & 2w & -4w & 2w \\ 0 & 0 & 0 & 2w & -4w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ 2w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  18. $n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ 3m \\ 4m \\ 2m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 0 & 0 & 0 \\ 2w & -4w & 2w & 0 & 0 \\ 0 & 2w & -4w & 2w & 0 \\ 0 & 0 & 2w & -2w & w \\ 0 & 0 & 0 & w & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ 2w \\ 2w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  19. $n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} 2m \\ 2m \\ 2m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 & 0 & 0 \\ 2w & -4w & 2w & 0 & 0 \\ 0 & 2w & -4w & 2w & 0 \\ 0 & 0 & 2w & -4w & 4w \\ 0 & 0 & 0 & 4w & -8w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 2w \\ 2w \\ 4w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  20. $n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 & 0 & 0 \\ 2w & -4w & 2w & 0 & 0 \\ 0 & 2w & -4w & 2w & 0 \\ 0 & 0 & 2w & -4w & 2w \\ 0 & 0 & 0 & 2w & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 2w \\ 2w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  21. $n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ 2m \\ 2m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 0 & 0 & 0 \\ 2w & -2w & w & 0 & 0 \\ 0 & w & -2w & w & 0 \\ 0 & 0 & w & -2w & 2w \\ 0 & 0 & 0 & 2w & -4w \\ \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ w \\ w \\ w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  22. $n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} 2m \\ m \\ m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & w & w & w \\ w & -2w & 0 & 0 & 0 \\ w & 0 & -2w & 0 & 0 \\ w & 0 & 0 & -2w & 0 \\ w & 0 & 0 & 0 & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  23. $n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ 2m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -4w & 2w & 0 & 0 & 0 \\ 2w & -2w & w & 0 & 0 \\ 0 & w & -2w & w & w \\ 0 & 0 & w & -2w & 0 \\ 0 & 0 & w & 0 & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} 2w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  24. $n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} 2m \\ 2m \\ 2m \\ m \\ m \end{matrix} \right), \quad \left( \begin{matrix} -2w & 2w & 0 & 0 & 0 \\ 2w & -4w & 2w & 0 & 0 \\ 0 & 2w & -4w & 2w & 2w \\ 0 & 0 & 2w & -4w & 0 \\ 0 & 0 & 2w & 0 & -4w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ 2w \\ 2w \\ 2w \\ 2w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  25. $n \geq 6$ and we have an $n$-cycle generalizing (16):

    1. $m_1 = \ldots = m_ n = m$,

    2. $a_{12} = \ldots = a_{(n - 1) n} = w$, $a_{1n} = w$, and for other $i < j$ we have $a_{ij} = 0$,

    3. $w_1 = \ldots = w_ n = w$

    with $w$ and $m$ arbitrary,

  26. $n \geq 6$ and we have a chain generalizing (19):

    1. $m_1 = \ldots = m_{n - 1} = 2m$, $m_ n = m$,

    2. $a_{12} = \ldots = a_{(n - 2) (n - 1)} = 2w$, $a_{(n - 1) n} = 4w$, and for other $i < j$ we have $a_{ij} = 0$,

    3. $w_1 = w$, $w_2 = \ldots = w_{n - 1} = 2w$, $w_ n = 4w$

    with $w$ and $m$ arbitrary,

  27. $n \geq 6$ and we have a chain generalizing (20):

    1. $m_1 = \ldots = m_ n = m$,

    2. $a_{12} = \ldots = a_{(n - 1) n} = w$, and for other $i < j$ we have $a_{ij} = 0$,

    3. $w_1 = w$, $w_2 = \ldots = w_{n - 1} = 2w$, $w_ n = w$

    with $w$ and $m$ arbitrary,

  28. $n \geq 6$ and we have a chain generalizing (21):

    1. $m_1 = w$, $w_2 = \ldots = m_{n - 1} = 2m$, $m_ n = m$,

    2. $a_{12} = 2w$, $a_{23} = \ldots = a_{(n - 2) (n - 1)} = w$, $a_{(n - 1) n} = 2w$, and for other $i < j$ we have $a_{ij} = 0$,

    3. $w_1 = 2w$, $w_2 = \ldots = w_{n - 1} = w$, $w_ n = 2w$

    with $w$ and $m$ arbitrary,

  29. $n \geq 6$ and we have a type generalizing (23):

    1. $m_1 = m$, $m_2 = \ldots = m_{n - 3} = 2m$, $m_{n - 1} = m_ n = m$,

    2. $a_{12} = 2w$, $a_{23} = \ldots = a_{(n - 2) (n - 1)} = w$, $a_{(n - 2) n} = w$, and for other $i < j$ we have $a_{ij} = 0$,

    3. $w_1 = 2w$, $w_2 = \ldots = w_ n = w$

    with $w$ and $m$ arbitrary,

  30. $n \geq 6$ and we have a type generalizing (24):

    1. $m_1 = \ldots = m_{n - 3} = 2m$, $m_{n - 1} = m_ n = m$,

    2. $a_{12} = \ldots = a_{(n - 2) (n - 1)} = 2w$, $a_{(n - 2) n} = 2w$, and for other $i < j$ we have $a_{ij} = 0$,

    3. $w_1 = w$, $w_2 = \ldots = w_ n = 2w$

    with $w$ and $m$ arbitrary,

  31. $n \geq 6$ and we have a type generalizing (22):

    1. $m_1 = m_2 = m$, $m_3 = \ldots = m_{n - 2} = 2m$, $m_{n - 1} = m_ n = m$,

    2. $a_{13} = w$, $a_{23} = \ldots = a_{(n - 2) (n - 1)} = w$, $a_{(n - 2) n} = w$, and for other $i < j$ we have $a_{ij} = 0$,

    3. $w_1 = \ldots = w_ n = w$,

    with $w$ and $m$ arbitrary,

  32. $n = 7$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ 3m \\ m \\ 2m \\ m \\ 2m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & 0 & 0 & 0 \\ w & -2w & w & 0 & 0 & 0 & 0 \\ 0 & w & -2w & 0 & w & 0 & w \\ 0 & 0 & 0 & -2w & w & 0 & 0 \\ 0 & 0 & w & w & -2w & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & -2w & w \\ 0 & 0 & w & 0 & 0 & w & -2w \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  33. $n = 8$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ 3m \\ 4m \\ 3m \\ 2m \\ m \\ 2m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & 0 & 0 & 0 & 0 \\ w & -2w & w & 0 & 0 & 0 & 0 & 0 \\ 0 & w & -2w & w & 0 & 0 & 0 & 0 \\ 0 & 0 & w & -2w & w & 0 & 0 & w \\ 0 & 0 & 0 & w & -2w & w & 0 & 0 \\ 0 & 0 & 0 & 0 & w & -2w & w & 0 \\ 0 & 0 & 0 & 0 & 0 & w & -2w & 0 \\ 0 & 0 & 0 & w & 0 & 0 & 0 & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary,

  34. $n = 9$, and $m_ i, a_{ij}, w_ i, g_ i$ given by

    \[ \left( \begin{matrix} m \\ 2m \\ 3m \\ 4m \\ 5m \\ 6m \\ 4m \\ 2m \\ 3m \end{matrix} \right), \quad \left( \begin{matrix} -2w & w & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ w & -2w & w & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & w & -2w & w & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & w & -2w & w & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & w & -2w & w & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & w & -2w & w & 0 & w \\ 0 & 0 & 0 & 0 & 0 & w & -2w & w & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & w & -2w & 0 \\ 0 & 0 & 0 & 0 & 0 & w & 0 & 0 & -2w \\ \end{matrix} \right), \quad \left( \begin{matrix} w \\ w \\ w \\ w \\ w \\ w \\ w \\ w \\ w \end{matrix} \right), \quad \left( \begin{matrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{matrix} \right) \]

    with $w$ and $m$ arbitrary.

Proof. This is proved in Section 55.5. See discussion at the start of Section 55.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C8R. Beware of the difference between the letter 'O' and the digit '0'.