55.6 Classification of minimal type for genus zero and one
The title of the section explains it all.
Lemma 55.6.1 (Genus zero). The only minimal numerical type of genus zero is $n = 1$, $m_1 = 1$, $a_{11} = 0$, $w_1 = 1$, $g_1 = 0$.
Proof.
Follows from Lemmas 55.3.13 and 55.3.5.
$\square$
Lemma 55.6.2 (Genus one). The minimal numerical types of genus one are up to equivalence
$n = 1$, $a_{11} = 0$, $g_1 = 1$, $m_1, w_1 \geq 1$ arbitrary,
$n = 2$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& 2w
\\ 2w
& -2w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 2$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} 2m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& 4w
\\ 4w
& -8w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ 4w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& w
& w
\\ w
& -2w
& w
\\ w
& w
& -2w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& w
& 0
\\ w
& -2w
& 3w
\\ 0
& 3w
& -6w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\\ 3w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ 3m
\end{matrix} \right), \quad \left( \begin{matrix} -6w
& 3w
& 0
\\ 3w
& -6w
& 3w
\\ 0
& 3w
& -2w
\end{matrix} \right), \quad \left( \begin{matrix} 3w
\\ 3w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} 2m
\\ 2m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& 2w
& 0
\\ 2w
& -4w
& 4w
\\ 0
& 4w
& -8w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ 2w
\\ 4w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& 2w
& 0
\\ 2w
& -4w
& 2w
\\ 0
& 2w
& -2w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ 2w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 3$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -4w
& 2w
& 0
\\ 2w
& -2w
& 2w
\\ 0
& 2w
& -4w
\end{matrix} \right), \quad \left( \begin{matrix} 2w
\\ w
\\ 2w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ m
\\ m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& w
& 0
& w
\\ w
& -2w
& w
& 0
\\ 0
& w
& -2w
& w
\\ w
& 0
& w
& -2w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\\ w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} 2m
\\ 2m
\\ 2m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& 2w
& 0
& 0
\\ 2w
& -4w
& 2w
& 0
\\ 0
& 2w
& -4w
& 4w
\\ 0
& 0
& 4w
& -8w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ 2w
\\ 2w
\\ 4w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ m
\\ m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& 2w
& 0
& 0
\\ 2w
& -4w
& 2w
& 0
\\ 0
& 2w
& -4w
& 2w
\\ 0
& 0
& 2w
& -2w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ 2w
\\ 2w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ 2m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -4w
& 2w
& 0
& 0
\\ 2w
& -2w
& w
& 0
\\ 0
& w
& -2w
& 2w
\\ 0
& 0
& 2w
& -4w
\end{matrix} \right), \quad \left( \begin{matrix} 2w
\\ w
\\ w
\\ 2w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} 2m
\\ m
\\ m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& w
& w
& 2w
\\ w
& -2w
& 0
& 0
\\ w
& 0
& -2w
& 0
\\ 2w
& 0
& 0
& -4w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\\ w
\\ 2w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 4$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} 2m
\\ m
\\ m
\\ 2m
\end{matrix} \right), \quad \left( \begin{matrix} -4w
& 2w
& 2w
& 2w
\\ 2w
& -4w
& 0
& 0
\\ 2w
& 0
& -4w
& 0
\\ 2w
& 0
& 0
& -2w
\end{matrix} \right), \quad \left( \begin{matrix} 2w
\\ 2w
\\ 2w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ m
\\ m
\\ m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& w
& 0
& 0
& w
\\ w
& -2w
& w
& 0
& 0
\\ 0
& w
& -2w
& w
& 0
\\ 0
& 0
& w
& -2w
& w
\\ w
& 0
& 0
& w
& -2w
\\ \end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\\ w
\\ w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ 3m
\\ 2m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& w
& 0
& 0
& 0
\\ w
& -2w
& w
& 0
& 0
\\ 0
& w
& -2w
& 2w
& 0
\\ 0
& 0
& 2w
& -4w
& 2w
\\ 0
& 0
& 0
& 2w
& -4w
\\ \end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\\ w
\\ 2w
\\ 2w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ 3m
\\ 4m
\\ 2m
\end{matrix} \right), \quad \left( \begin{matrix} -4w
& 2w
& 0
& 0
& 0
\\ 2w
& -4w
& 2w
& 0
& 0
\\ 0
& 2w
& -4w
& 2w
& 0
\\ 0
& 0
& 2w
& -2w
& w
\\ 0
& 0
& 0
& w
& -2w
\\ \end{matrix} \right), \quad \left( \begin{matrix} 2w
\\ 2w
\\ 2w
\\ w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} 2m
\\ 2m
\\ 2m
\\ 2m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& 2w
& 0
& 0
& 0
\\ 2w
& -4w
& 2w
& 0
& 0
\\ 0
& 2w
& -4w
& 2w
& 0
\\ 0
& 0
& 2w
& -4w
& 4w
\\ 0
& 0
& 0
& 4w
& -8w
\\ \end{matrix} \right), \quad \left( \begin{matrix} w
\\ 2w
\\ 2w
\\ 2w
\\ 4w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ m
\\ m
\\ m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& 2w
& 0
& 0
& 0
\\ 2w
& -4w
& 2w
& 0
& 0
\\ 0
& 2w
& -4w
& 2w
& 0
\\ 0
& 0
& 2w
& -4w
& 2w
\\ 0
& 0
& 0
& 2w
& -2w
\\ \end{matrix} \right), \quad \left( \begin{matrix} w
\\ 2w
\\ 2w
\\ 2w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ 2m
\\ 2m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -4w
& 2w
& 0
& 0
& 0
\\ 2w
& -2w
& w
& 0
& 0
\\ 0
& w
& -2w
& w
& 0
\\ 0
& 0
& w
& -2w
& 2w
\\ 0
& 0
& 0
& 2w
& -4w
\\ \end{matrix} \right), \quad \left( \begin{matrix} 2w
\\ w
\\ w
\\ w
\\ 2w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} 2m
\\ m
\\ m
\\ m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& w
& w
& w
& w
\\ w
& -2w
& 0
& 0
& 0
\\ w
& 0
& -2w
& 0
& 0
\\ w
& 0
& 0
& -2w
& 0
\\ w
& 0
& 0
& 0
& -2w
\\ \end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\\ w
\\ w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ 2m
\\ m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -4w
& 2w
& 0
& 0
& 0
\\ 2w
& -2w
& w
& 0
& 0
\\ 0
& w
& -2w
& w
& w
\\ 0
& 0
& w
& -2w
& 0
\\ 0
& 0
& w
& 0
& -2w
\\ \end{matrix} \right), \quad \left( \begin{matrix} 2w
\\ w
\\ w
\\ w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 5$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} 2m
\\ 2m
\\ 2m
\\ m
\\ m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& 2w
& 0
& 0
& 0
\\ 2w
& -4w
& 2w
& 0
& 0
\\ 0
& 2w
& -4w
& 2w
& 2w
\\ 0
& 0
& 2w
& -4w
& 0
\\ 0
& 0
& 2w
& 0
& -4w
\\ \end{matrix} \right), \quad \left( \begin{matrix} w
\\ 2w
\\ 2w
\\ 2w
\\ 2w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n \geq 6$ and we have an $n$-cycle generalizing (16):
$m_1 = \ldots = m_ n = m$,
$a_{12} = \ldots = a_{(n - 1) n} = w$, $a_{1n} = w$, and for other $i < j$ we have $a_{ij} = 0$,
$w_1 = \ldots = w_ n = w$
with $w$ and $m$ arbitrary,
$n \geq 6$ and we have a chain generalizing (19):
$m_1 = \ldots = m_{n - 1} = 2m$, $m_ n = m$,
$a_{12} = \ldots = a_{(n - 2) (n - 1)} = 2w$, $a_{(n - 1) n} = 4w$, and for other $i < j$ we have $a_{ij} = 0$,
$w_1 = w$, $w_2 = \ldots = w_{n - 1} = 2w$, $w_ n = 4w$
with $w$ and $m$ arbitrary,
$n \geq 6$ and we have a chain generalizing (20):
$m_1 = \ldots = m_ n = m$,
$a_{12} = \ldots = a_{(n - 1) n} = w$, and for other $i < j$ we have $a_{ij} = 0$,
$w_1 = w$, $w_2 = \ldots = w_{n - 1} = 2w$, $w_ n = w$
with $w$ and $m$ arbitrary,
$n \geq 6$ and we have a chain generalizing (21):
$m_1 = w$, $w_2 = \ldots = m_{n - 1} = 2m$, $m_ n = m$,
$a_{12} = 2w$, $a_{23} = \ldots = a_{(n - 2) (n - 1)} = w$, $a_{(n - 1) n} = 2w$, and for other $i < j$ we have $a_{ij} = 0$,
$w_1 = 2w$, $w_2 = \ldots = w_{n - 1} = w$, $w_ n = 2w$
with $w$ and $m$ arbitrary,
$n \geq 6$ and we have a type generalizing (23):
$m_1 = m$, $m_2 = \ldots = m_{n - 3} = 2m$, $m_{n - 1} = m_ n = m$,
$a_{12} = 2w$, $a_{23} = \ldots = a_{(n - 2) (n - 1)} = w$, $a_{(n - 2) n} = w$, and for other $i < j$ we have $a_{ij} = 0$,
$w_1 = 2w$, $w_2 = \ldots = w_ n = w$
with $w$ and $m$ arbitrary,
$n \geq 6$ and we have a type generalizing (24):
$m_1 = \ldots = m_{n - 3} = 2m$, $m_{n - 1} = m_ n = m$,
$a_{12} = \ldots = a_{(n - 2) (n - 1)} = 2w$, $a_{(n - 2) n} = 2w$, and for other $i < j$ we have $a_{ij} = 0$,
$w_1 = w$, $w_2 = \ldots = w_ n = 2w$
with $w$ and $m$ arbitrary,
$n \geq 6$ and we have a type generalizing (22):
$m_1 = m_2 = m$, $m_3 = \ldots = m_{n - 2} = 2m$, $m_{n - 1} = m_ n = m$,
$a_{13} = w$, $a_{23} = \ldots = a_{(n - 2) (n - 1)} = w$, $a_{(n - 2) n} = w$, and for other $i < j$ we have $a_{ij} = 0$,
$w_1 = \ldots = w_ n = w$,
with $w$ and $m$ arbitrary,
$n = 7$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ 3m
\\ m
\\ 2m
\\ m
\\ 2m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& w
& 0
& 0
& 0
& 0
& 0
\\ w
& -2w
& w
& 0
& 0
& 0
& 0
\\ 0
& w
& -2w
& 0
& w
& 0
& w
\\ 0
& 0
& 0
& -2w
& w
& 0
& 0
\\ 0
& 0
& w
& w
& -2w
& 0
& 0
\\ 0
& 0
& 0
& 0
& 0
& -2w
& w
\\ 0
& 0
& w
& 0
& 0
& w
& -2w
\end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\\ w
\\ w
\\ w
\\ w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 8$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ 3m
\\ 4m
\\ 3m
\\ 2m
\\ m
\\ 2m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& w
& 0
& 0
& 0
& 0
& 0
& 0
\\ w
& -2w
& w
& 0
& 0
& 0
& 0
& 0
\\ 0
& w
& -2w
& w
& 0
& 0
& 0
& 0
\\ 0
& 0
& w
& -2w
& w
& 0
& 0
& w
\\ 0
& 0
& 0
& w
& -2w
& w
& 0
& 0
\\ 0
& 0
& 0
& 0
& w
& -2w
& w
& 0
\\ 0
& 0
& 0
& 0
& 0
& w
& -2w
& 0
\\ 0
& 0
& 0
& w
& 0
& 0
& 0
& -2w
\\ \end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\\ w
\\ w
\\ w
\\ w
\\ w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary,
$n = 9$, and $m_ i, a_{ij}, w_ i, g_ i$ given by
\[ \left( \begin{matrix} m
\\ 2m
\\ 3m
\\ 4m
\\ 5m
\\ 6m
\\ 4m
\\ 2m
\\ 3m
\end{matrix} \right), \quad \left( \begin{matrix} -2w
& w
& 0
& 0
& 0
& 0
& 0
& 0
& 0
\\ w
& -2w
& w
& 0
& 0
& 0
& 0
& 0
& 0
\\ 0
& w
& -2w
& w
& 0
& 0
& 0
& 0
& 0
\\ 0
& 0
& w
& -2w
& w
& 0
& 0
& 0
& 0
\\ 0
& 0
& 0
& w
& -2w
& w
& 0
& 0
& 0
\\ 0
& 0
& 0
& 0
& w
& -2w
& w
& 0
& w
\\ 0
& 0
& 0
& 0
& 0
& w
& -2w
& w
& 0
\\ 0
& 0
& 0
& 0
& 0
& 0
& w
& -2w
& 0
\\ 0
& 0
& 0
& 0
& 0
& w
& 0
& 0
& -2w
\\ \end{matrix} \right), \quad \left( \begin{matrix} w
\\ w
\\ w
\\ w
\\ w
\\ w
\\ w
\\ w
\\ w
\end{matrix} \right), \quad \left( \begin{matrix} 0
\\ 0
\\ 0
\\ 0
\\ 0
\\ 0
\\ 0
\\ 0
\\ 0
\end{matrix} \right) \]
with $w$ and $m$ arbitrary.
Proof.
This is proved in Section 55.5. See discussion at the start of Section 55.5.
$\square$
Comments (0)