The Stacks project

Lemma 55.3.5. Let $n, m_ i, a_{ij}, w_ i, g_ i$ be a numerical type of genus $g$. If $n = 1$, then $a_{11} = 0$ and $g = 1 + m_1w_1(g_1 - 1)$. Moreover, we can classify all such numerical types as follows

  1. If $g < 0$, then $g_1 = 0$ and there are finitely many possible numerical types of genus $g$ with $n = 1$ corresponding to factorizations $m_1w_1 = 1 - g$.

  2. If $g = 0$, then $m_1 = 1$, $w_1 = 1$, $g_1 = 0$ as in Lemma 55.6.1.

  3. If $g = 1$, then we conclude $g_1 = 1$ but $m_1, w_1$ can be arbitrary positive integers; this is case (1) of Lemma 55.6.2.

  4. If $g > 1$, then $g_1 > 1$ and there are finitely many possible numerical types of genus $g$ with $n = 1$ corresponding to factorizations $m_1w_1(g_1 - 1) = g - 1$.

Proof. The lemma proves itself. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C73. Beware of the difference between the letter 'O' and the digit '0'.