The Stacks project

Lemma 55.2.6. Let $A = (a_{ij})$ be a symmetric $n \times n$ integer matrix with $a_{ij} \geq 0$ for $i \not= j$. Let $m = (m_1, \ldots , m_ n)$ be an integer vector with $m_ i > 0$. Assume

  1. $Am = 0$,

  2. there is no proper nonempty subset $I \subset \{ 1, \ldots , n\} $ such that $a_{ij} = 0$ for $i \in I$ and $j \not\in I$.

Let $e$ be the number of pairs $(i, j)$ with $i < j$ and $a_{ij} > 0$. Then for $\ell $ a prime number coprime with all $a_{ij}$ and $m_ i$ we have

\[ \dim _{\mathbf{F}_\ell }(\mathop{\mathrm{Coker}}(A)[\ell ]) \leq 1 - n + e \]

Proof. By Lemma 55.2.3 the rank of $A$ is $n - 1$. The composition

\[ \mathbf{Z}^{\oplus n} \xrightarrow {\text{diag}(m_1, \ldots , m_ n)} \mathbf{Z}^{\oplus n} \xrightarrow {(a_{ij})} \mathbf{Z}^{\oplus n} \xrightarrow {\text{diag}(m_1, \ldots , m_ n)} \mathbf{Z}^{\oplus n} \]

has matrix $a_{ij}m_ im_ j$. Since the cokernel of the first and last maps are torsion of order prime to $\ell $ by our restriction on $\ell $ we see that it suffices to prove the lemma for the matrix with entries $a_{ij}m_ im_ j$. Thus we may assume $m = (1, \ldots , 1)$.

Assume $m = (1, \ldots , 1)$. Set $V = \{ 1, \ldots , n\} $ and $E = \{ (i, j) \mid i < j\text{ and }a_{ij} > 0\} $. For $e = (i, j) \in E$ set $a_ e = a_{ij}$. Define maps $s, t : E \to V$ by setting $s(i, j) = i$ and $t(i, j) = j$. Set $\mathbf{Z}(V) = \bigoplus _{i \in V} \mathbf{Z}i$ and $\mathbf{Z}(E) = \bigoplus _{e \in E} \mathbf{Z}e$. We define symmetric positive definite integer valued pairings on $\mathbf{Z}(V)$ and $\mathbf{Z}(E)$ by setting

\[ \langle i, i \rangle = 1\text{ for }i \in V, \quad \langle e, e \rangle = a_ e\text{ for }e \in E \]

and all other pairings zero. Consider the maps

\[ \text{d} : \mathbf{Z}(V) \to \mathbf{Z}(E), \quad i \longmapsto \sum \nolimits _{e \in E,\ s(e) = i} e - \sum \nolimits _{e \in E,\ t(e) = i} e \]

and

\[ \text{d}^*(e) = a_ e(s(e) - t(e)) \]

A computation shows that

\[ \langle d(x), y\rangle = \langle x, \text{d}^*(y) \rangle \]

in other words, $\text{d}$ and $\text{d}^*$ are adjoint. Next we compute

\begin{align*} \text{d}^*\text{d}(i) & = \text{d}^*( \sum \nolimits _{e \in E,\ s(e) = i} e - \sum \nolimits _{e \in E,\ t(e) = i} e) \\ & = \sum \nolimits _{e \in E,\ s(e) = i} a_ e(s(e) - t(e)) - \sum \nolimits _{e \in E,\ t(e) = i} a_ e(s(e) - t(e)) \end{align*}

The coefficient of $i$ in $\text{d}^*\text{d}(i)$ is

\[ \sum \nolimits _{e \in E,\ s(e) = i} a_ e + \sum \nolimits _{e \in E,\ t(e) = i} a_ e = - a_{ii} \]

because $\sum _ j a_{ij} = 0$ and the coefficient of $j \not= i$ in $\text{d}^*\text{d}(i)$ is $-a_{ij}$. Hence $\mathop{\mathrm{Coker}}(A) = \mathop{\mathrm{Coker}}(\text{d}^*\text{d})$.

Consider the inclusion

\[ \mathop{\mathrm{Im}}(\text{d}) \oplus \mathop{\mathrm{Ker}}(\text{d}^*) \subset \mathbf{Z}(E) \]

The left hand side is an orthogonal direct sum. Clearly $\mathbf{Z}(E)/\mathop{\mathrm{Ker}}(\text{d}^*)$ is torsion free. We claim $\mathbf{Z}(E)/\mathop{\mathrm{Im}}(\text{d})$ is torsion free as well. Namely, say $x = \sum x_ e e \in \mathbf{Z}(E)$ and $a > 1$ are such that $ax = \text{d}y$ for some $y = \sum y_ i i \in \mathbf{Z}(V)$. Then $a x_ e = y_{s(e)} - y_{t(e)}$. By property (2) we conclude that all $y_ i$ have the same congruence class modulo $a$. Hence we can write $y = a y' + (y_1, y_1, \ldots , y_1)$. Since $\text{d}(y_1, y_1, \ldots , y_1) = 0$ we conclude that $x = \text{d}(y')$ which is what we had to show.

Hence we may apply Lemma 55.2.4 to get injective maps

\[ \mathop{\mathrm{Im}}(\text{d})^\# /\mathop{\mathrm{Im}}(\text{d}) \leftarrow \mathbf{Z}(E)/(\mathop{\mathrm{Im}}(\text{d}) \oplus \mathop{\mathrm{Ker}}(\text{d}^*)) \rightarrow \mathop{\mathrm{Ker}}(\text{d}^*)^\# /\mathop{\mathrm{Ker}}(\text{d}^*) \]

whose cokernels are annihilated by the product of the $a_ e$ (which is prime to $\ell $). Since $\mathop{\mathrm{Ker}}(\text{d}^*)$ is a lattice of rank $1 - n + e$ we see that the proof is complete if we prove that there exists an isomorphism

\[ \Phi : M_{torsion} \longrightarrow \mathop{\mathrm{Im}}(\text{d})^\# /\mathop{\mathrm{Im}}(\text{d}) \]

This is proved in Lemma 55.2.5. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C6X. Beware of the difference between the letter 'O' and the digit '0'.