The Stacks project

Lemma 55.2.4. Let $L$ be a finite free $\mathbf{Z}$-module endowed with an integral symmetric bilinear positive definite form $\langle \ ,\ \rangle : L \times L \to \mathbf{Z}$. Let $A \subset L$ be a submodule with $L/A$ torsion free. Set $B = \{ b \in L \mid \langle a, b\rangle = 0,\ \forall a \in A\} $. Then we have injective maps

\[ A^\# /A \leftarrow L/(A \oplus B) \rightarrow B^\# /B \]

whose cokernels are quotients of $L^\# /L$. Here $A^\# = \{ a' \in A \otimes \mathbf{Q} \mid \langle a, a'\rangle \in \mathbf{Z},\ \forall a \in A\} $ and similarly for $B$ and $L$.

Proof. Observe that $L \otimes \mathbf{Q} = A \otimes \mathbf{Q} \oplus B \otimes \mathbf{Q}$ because the form is nondegenerate on $A$ (by positivity). We denote $\pi _ B : L \otimes \mathbf{Q} \to B \otimes \mathbf{Q}$ the projection. Observe that $\pi _ B(x) \in B^\# $ for $x \in L$ because the form is integral. This gives an exact sequence

\[ 0 \to A \to L \xrightarrow {\pi _ B} B^\# \to Q \to 0 \]

where $Q$ is the cokernel of $L \to B^\# $. Observe that $Q$ is a quotient of $L^\# /L$ as the map $L^\# \to B^\# $ is surjective since it is the $\mathbf{Z}$-linear dual to $B \to L$ which is split as a map of $\mathbf{Z}$-modules. Dividing by $A \oplus B$ we get a short exact sequence

\[ 0 \to L/(A \oplus B) \to B^\# /B \to Q \to 0 \]

This proves the lemma. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0C6V. Beware of the difference between the letter 'O' and the digit '0'.