Lemma 10.122.9. Let $A \to B$ and $B \to C$ be ring homomorphisms such that $A \to C$ is of finite type. Let $\mathfrak r$ be a prime of $C$ lying over $\mathfrak q \subset B$ and $\mathfrak p \subset A$. If $A \to C$ is quasi-finite at $\mathfrak r$, then $B \to C$ is quasi-finite at $\mathfrak r$.
Proof. Observe that $B \to C$ is of finite type (Lemma 10.6.2) so that the statement makes sense. Let us use characterization (3) of Lemma 10.122.2. If $A \to C$ is quasi-finite at $\mathfrak r$, then there exists some $c \in C$ such that
Since the primes $\mathfrak r' \subset C$ lying over $\mathfrak q$ form a subset of the primes $\mathfrak r' \subset C$ lying over $\mathfrak p$ we conclude $B \to C$ is quasi-finite at $\mathfrak r$. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (2)
Comment #3952 by Manuel Hoff on
Comment #3958 by Johan on