Lemma 10.165.6. Let $k'/k$ be a separable algebraic field extension. Let $A$ be an algebra over $k'$. Then $A$ is geometrically normal over $k$ if and only if it is geometrically normal over $k'$.
Proof. Let $L/k$ be a finite purely inseparable field extension. Then $L' = k' \otimes _ k L$ is a field (see material in Fields, Section 9.28) and $A \otimes _ k L = A \otimes _{k'} L'$. Hence if $A$ is geometrically normal over $k'$, then $A$ is geometrically normal over $k$.
Assume $A$ is geometrically normal over $k$. Let $K/k'$ be a field extension. Then
Since $k' \otimes _ k k' \to k'$ is a localization by Lemma 10.43.8, we see that $K \otimes _{k'} A$ is a localization of a normal ring, hence normal. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)