The Stacks project

Remark 48.20.10. Let $S$ be a Noetherian scheme which has a dualizing complex. Let $f : X \to Y$ be a morphism of schemes of finite type over $S$. Then the functor

\[ f_{new}^! : D^+_{Coh}(\mathcal{O}_ Y) \to D^+_{Coh}(\mathcal{O}_ X) \]

is independent of the choice of the dualizing complex $\omega _ S^\bullet $ up to canonical isomorphism. We sketch the proof. Any second dualizing complex is of the form $\omega _ S^\bullet \otimes _{\mathcal{O}_ S}^\mathbf {L} \mathcal{L}$ where $\mathcal{L}$ is an invertible object of $D(\mathcal{O}_ S)$, see Lemma 48.2.6. For any separated morphism $p : U \to S$ of finite type we have $p^!(\omega _ S^\bullet \otimes ^\mathbf {L}_{\mathcal{O}_ S} \mathcal{L}) = p^!(\omega _ S^\bullet ) \otimes ^\mathbf {L}_{\mathcal{O}_ U} Lp^*\mathcal{L}$ by Lemma 48.8.1. Hence, if $\omega _ X^\bullet $ and $\omega _ Y^\bullet $ are the dualizing complexes normalized relative to $\omega _ S^\bullet $ we see that $\omega _ X^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} La^*\mathcal{L}$ and $\omega _ Y^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} Lb^*\mathcal{L}$ are the dualizing complexes normalized relative to $\omega _ S^\bullet \otimes _{\mathcal{O}_ S}^\mathbf {L} \mathcal{L}$ (where $a : X \to S$ and $b : Y \to S$ are the structure morphisms). Then the result follows as

\begin{align*} & R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(Lf^*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(K, \omega _ Y^\bullet \otimes _{\mathcal{O}_ Y}^\mathbf {L} Lb^*\mathcal{L}), \omega _ X^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} La^*\mathcal{L}) \\ & = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(Lf^*R(\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(K, \omega _ Y^\bullet ) \otimes _{\mathcal{O}_ Y}^\mathbf {L} Lb^*\mathcal{L}), \omega _ X^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} La^*\mathcal{L}) \\ & = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(Lf^*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(K, \omega _ Y^\bullet ) \otimes _{\mathcal{O}_ X}^\mathbf {L} La^*\mathcal{L}, \omega _ X^\bullet \otimes _{\mathcal{O}_ X}^\mathbf {L} La^*\mathcal{L}) \\ & = R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ X}(Lf^*R\mathop{\mathcal{H}\! \mathit{om}}\nolimits _{\mathcal{O}_ Y}(K, \omega _ Y^\bullet ), \omega _ X^\bullet ) \end{align*}

for $K \in D^+_{Coh}(\mathcal{O}_ Y)$. The last equality because $La^*\mathcal{L}$ is invertible in $D(\mathcal{O}_ X)$.


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BV3. Beware of the difference between the letter 'O' and the digit '0'.