Lemma 15.110.6. Let $R$ be a ring. Let $G$ be a finite group of order $n$ acting on $R$. Let $A$ be an $R^ G$-algebra.
for $b \in (A \otimes _{R^ G} R)^ G$ there exists a monic polynomial $P \in A[T]$ whose image in $(A \otimes _{R^ G} R)^ G[T]$ is $(T - b)^ n$,
for $a \in \mathop{\mathrm{Ker}}(A \to (A \otimes _{R^ G} R)^ G)$ we have $(T - a)^ n = T^ n$ in $A[T]$.
Comments (0)
There are also: