Lemma 10.46.9. Let $\varphi : R \to S$ be a ring map. Assume
$\varphi $ is integral,
$\varphi $ induces an injective map of spectra,
$\varphi $ induces purely inseparable residue field extensions.
Then $\varphi $ induces a homeomorphism from $\mathop{\mathrm{Spec}}(S)$ onto a closed subset of $\mathop{\mathrm{Spec}}(R)$ and for any ring map $R \to R'$ properties (1), (2), (3) are true for $R' \to R' \otimes _ R S$.
Comments (0)