The Stacks project

Lemma 12.24.13. Let $\mathcal{A}$ be an abelian category. Let $(K^\bullet , F)$ be a filtered complex of $\mathcal{A}$. Assume

  1. for every $n$ there exist $p_0(n)$ such that $H^ n(F^ pK^\bullet ) = 0$ for $p \geq p_0(n)$,

  2. for every $n$ there exist $p_1(n)$ such that $H^ n(F^ pK^\bullet ) \to H^ n(K^\bullet )$ is an isomorphism for $p \leq p_1(n)$.

Then

  1. the spectral sequence associated to $(K^\bullet , F)$ is bounded,

  2. the filtration on each $H^ n(K^\bullet )$ is finite,

  3. the spectral sequence associated to $(K^\bullet , F)$ converges to $H^*(K^\bullet )$.

Proof. Fix $n$. Using the long exact cohomology sequence associated to the short exact sequence of complexes

\[ 0 \to F^{p + 1}K^\bullet \to F^ pK^\bullet \to \text{gr}^ pK^\bullet \to 0 \]

we find that $E_1^{p, n - p} = 0$ for $p \geq \max (p_0(n), p_0(n + 1))$ and $p < \min (p_1(n), p_1(n + 1))$. Hence the spectral sequence is bounded (Definition 12.24.7). This proves (1).

It is clear from the assumptions and Definition 12.24.5 that the filtration on $H^ n(K^\bullet )$ is finite. This proves (2).

Next we prove that the spectral sequence weakly converges to $H^*(K^\bullet )$ using Lemma 12.24.10. Let us show that we have equality in (12.24.6.1). Namely, for $p + r > p_0(n + 1)$ the map

\[ d : F^ pK^{n} \cap d^{-1}(F^{p + r}K^{n + 1}) \to F^{p + r}K^{n + 1} \]

ends up in the image of $d : F^{p + r}K^ n \to F^{p + r}K^{n + 1}$ because the complex $F^{p + r}K^\bullet $ is exact in degree $n + 1$. We conclude that $F^ pK^{n} \cap d^{-1}(F^{p + r}K^{n + 1}) = d(F^{p + r}K^ n) + \mathop{\mathrm{Ker}}(d) \cap F^ pK^ n$. Hence for such $r$ we have

\[ \mathop{\mathrm{Ker}}(d) \cap F^ pK^{n} + F^{p + 1}K^{n} = F^ pK^{n} \cap d^{-1}(F^{p + r}K^{n + 1}) + F^{p + 1}K^{n} \]

which proves the desired equality. To show that we have equality in (12.24.6.2) we use that for $p - r + 1 < p_1(n - 1)$ we have

\[ d(F^{p - r + 1}K^{n - 1}) = \mathop{\mathrm{Im}}(d) \cap F^{p - r + 1}K^ n \]

because the map $F^{p - r + 1}K^\bullet \to K^\bullet $ induces an isomorphism on cohomology in degree $n - 1$. This shows that we have

\[ F^ pK^{n} \cap d(F^{p - r + 1}K^{n - 1}) + F^{p + 1}K^{n} = \mathop{\mathrm{Im}}(d) \cap F^ pK^{n} + F^{p + 1}K^{n} \]

for such $r$ which proves the desired equality.

To see that the spectral sequence abuts to $H^*(K^\bullet )$ using Lemma 12.24.10 we have to show that $\bigcap _ p (\mathop{\mathrm{Ker}}(d) \cap F^ pK^ n + \mathop{\mathrm{Im}}(d) \cap K^ n) = \mathop{\mathrm{Im}}(d) \cap K^ n$ and $\bigcup _ p (\mathop{\mathrm{Ker}}(d) \cap F^ pK^ n + \mathop{\mathrm{Im}}(d) \cap K^ n) = \mathop{\mathrm{Ker}}(d) \cap K^ n$. For $p \geq p_0(n)$ we have $\mathop{\mathrm{Ker}}(d) \cap F^ pK^ n + \mathop{\mathrm{Im}}(d) \cap K^ n = \mathop{\mathrm{Im}}(d) \cap K^ n$ and for $p \leq p_1(n)$ we have $\mathop{\mathrm{Ker}}(d) \cap F^ pK^ n + \mathop{\mathrm{Im}}(d) \cap K^ n = \mathop{\mathrm{Ker}}(d) \cap K^ n$. Combining weak convergence, abutment, and boundedness we see that (2) and (3) are true. $\square$


Comments (0)


Post a comment

Your email address will not be published. Required fields are marked.

In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).

Unfortunately JavaScript is disabled in your browser, so the comment preview function will not work.

All contributions are licensed under the GNU Free Documentation License.




In order to prevent bots from posting comments, we would like you to prove that you are human. You can do this by filling in the name of the current tag in the following input field. As a reminder, this is tag 0BK5. Beware of the difference between the letter 'O' and the digit '0'.