Lemma 12.24.10. Let $\mathcal{A}$ be an abelian category. Let $(K^\bullet , F)$ be a filtered complex of $\mathcal{A}$. The associated spectral sequence
weakly converges to $H^*(K^\bullet )$ if and only if for every $p, q \in \mathbf{Z}$ we have equality in equations (12.24.6.2) and (12.24.6.1),
abuts to $H^*(K)$ if and only if it weakly converges to $H^*(K^\bullet )$ and we have $\bigcap _ p (\mathop{\mathrm{Ker}}(d) \cap F^ pK^ n + \mathop{\mathrm{Im}}(d) \cap K^ n) = \mathop{\mathrm{Im}}(d) \cap K^ n$ and $\bigcup _ p (\mathop{\mathrm{Ker}}(d) \cap F^ pK^ n + \mathop{\mathrm{Im}}(d) \cap K^ n) = \mathop{\mathrm{Ker}}(d) \cap K^ n$.
Comments (1)
Comment #1279 by Johan Commelin on