Lemma 65.11.2. Let $S$ be a scheme contained in $\mathit{Sch}_{fppf}$. Let $G$ be an algebraic space over $S$, let $F$ be a sheaf on $(\mathit{Sch}/S)_{fppf}$, and let $G \to F$ be a representable transformation of functors which is surjective and étale. Then $F$ is an algebraic space.
Proof. Pick a scheme $U$ and a surjective étale morphism $U \to G$. Since $G$ is an algebraic space $U \to G$ is representable. Hence the composition $U \to G \to F$ is representable, surjective, and étale. See Lemmas 65.3.2 and 65.5.4. Thus $F$ is an algebraic space by Lemma 65.11.1. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)