Lemma 42.38.6. Let $(S, \delta )$ be as in Situation 42.7.1. Let $X$ be locally of finite type over $S$. Let $\mathcal{E}$ be a finite locally free sheaf of rank $r$ on $X$. Let $(\mathcal{L}, s, i : D \to X)$ be as in Definition 42.29.1. Then $c_ j(\mathcal{E}|_ D) \cap i^*\alpha = i^*(c_ j(\mathcal{E}) \cap \alpha )$ for all $\alpha \in \mathop{\mathrm{CH}}\nolimits _ k(X)$.
Proof. Write $\alpha _ j = c_ j(\mathcal{E}) \cap \alpha $, so $\alpha _0 = \alpha $. By Lemma 42.38.2 we have
in the chow group of the projective bundle $(\pi : P \to X, \mathcal{O}_ P(1))$ associated to $\mathcal{E}$. Consider the fibre product diagram
Note that $\mathcal{O}_{P_ D}(1)$ is the pullback of $\mathcal{O}_ P(1)$. Apply the gysin map $(i')^*$ (Lemma 42.30.2) to the displayed equation above. Applying Lemmas 42.30.4 and 42.29.9 we obtain
in the chow group of $P_ D$. By the characterization of Lemma 42.38.2 we conclude. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)
There are also: