Remark 42.29.3. Let $X$ be a scheme locally of finite type over $S$ as in Situation 42.7.1. In [F] a pseudo-divisor on $X$ is defined as a triple $D = (\mathcal{L}, Z, s)$ where $\mathcal{L}$ is an invertible $\mathcal{O}_ X$-module, $Z \subset X$ is a closed subset, and $s \in \Gamma (X \setminus Z, \mathcal{L})$ is a nowhere vanishing section. Similarly to the above, one can define for every $\alpha $ in $\mathop{\mathrm{CH}}\nolimits _{k + 1}(X)$ a product $D \cdot \alpha $ in $\mathop{\mathrm{CH}}\nolimits _ k(Z \cap |\alpha |)$ where $|\alpha |$ is the support of $\alpha $.
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)