Lemma 10.88.4. Let $f : M \to N$ and $g : M \to M'$ be maps of $R$-modules. Consider the pushout of $f$ and $g$,
Then $g$ dominates $f$ if and only if $f'$ is universally injective.
Lemma 10.88.4. Let $f : M \to N$ and $g : M \to M'$ be maps of $R$-modules. Consider the pushout of $f$ and $g$,
Then $g$ dominates $f$ if and only if $f'$ is universally injective.
Proof. Recall that $N'$ is $M' \oplus N$ modulo the submodule consisting of elements $(g(x), -f(x))$ for $x \in M$. From the construction of $N'$ we have a short exact sequence
Since tensoring commutes with taking pushouts, we have such a short exact sequence
for every $R$-module $Q$. So $f'$ is universally injective if and only if $\mathop{\mathrm{Ker}}(f \otimes \text{id}_ Q ) \subset \mathop{\mathrm{Ker}}(g \otimes \text{id}_ Q)$ for every $Q$, if and only if $g$ dominates $f$. $\square$
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)