Lemma 48.20.6. Let $(S, \omega _ S^\bullet )$ be as in Situation 48.20.1. Let $f : X \to Y$ be a morphism of finite type schemes over $S$. Let $\omega _ X^\bullet $ and $\omega _ Y^\bullet $ be dualizing complexes normalized relative to $\omega _ S^\bullet $. Then $\omega _ X^\bullet $ is a dualizing complex normalized relative to $\omega _ Y^\bullet $.
Proof. This is just a matter of bookkeeping. Choose a finite affine open covering $\mathcal{V} : Y = \bigcup V_ j$. For each $j$ choose a finite affine open covering $f^{-1}(V_ j) = U_{ji}$. Set $\mathcal{U} : X = \bigcup U_{ji}$. The schemes $V_ j$ and $U_{ji}$ are separated over $S$, hence we have the upper shriek functors for $q_ j : V_ j \to S$, $p_{ji} : U_{ji} \to S$ and $f_{ji} : U_{ji} \to V_ j$ and $f_{ji}' : U_{ji} \to Y$. Let $(L, \beta _ j)$ be a dualizing complex normalized relative to $\omega _ S^\bullet $ and $\mathcal{V}$. Let $(K, \gamma _{ji})$ be a dualizing complex normalized relative to $\omega _ S^\bullet $ and $\mathcal{U}$. (In other words, $L = \omega _ Y^\bullet $ and $K = \omega _ X^\bullet $.) We can define
To finish the proof we have to show that $\alpha _{ji}|_{U_{ji} \cap U_{j'i'}} \circ \alpha _{j'i'}^{-1}|_{U_{ji} \cap U_{j'i'}}$ is the canonical isomorphism $(f_{ji}')^!(L)|_{U_{ji} \cap U_{j'i'}} \to (f_{j'i'}')^!(L)|_{U_{ji} \cap U_{j'i'}}$. This is formal and we omit the details. $\square$
Post a comment
Your email address will not be published. Required fields are marked.
In your comment you can use Markdown and LaTeX style mathematics (enclose it like $\pi$
). A preview option is available if you wish to see how it works out (just click on the eye in the toolbar).
All contributions are licensed under the GNU Free Documentation License.
Comments (0)